Step |
Hyp |
Ref |
Expression |
1 |
|
mulgdi.b |
|
2 |
|
mulgdi.m |
|
3 |
|
mulgdi.p |
|
4 |
|
cmnmnd |
|
5 |
4
|
ad2antrr |
|
6 |
1 3
|
mndcl |
|
7 |
6
|
3expb |
|
8 |
5 7
|
sylan |
|
9 |
1 3
|
cmncom |
|
10 |
9
|
3expb |
|
11 |
10
|
ad4ant14 |
|
12 |
1 3
|
mndass |
|
13 |
5 12
|
sylan |
|
14 |
|
simpr |
|
15 |
|
nnuz |
|
16 |
14 15
|
eleqtrdi |
|
17 |
|
simplr2 |
|
18 |
|
elfznn |
|
19 |
|
fvconst2g |
|
20 |
17 18 19
|
syl2an |
|
21 |
17
|
adantr |
|
22 |
20 21
|
eqeltrd |
|
23 |
|
simplr3 |
|
24 |
|
fvconst2g |
|
25 |
23 18 24
|
syl2an |
|
26 |
23
|
adantr |
|
27 |
25 26
|
eqeltrd |
|
28 |
1 3
|
mndcl |
|
29 |
5 17 23 28
|
syl3anc |
|
30 |
|
fvconst2g |
|
31 |
29 18 30
|
syl2an |
|
32 |
20 25
|
oveq12d |
|
33 |
31 32
|
eqtr4d |
|
34 |
8 11 13 16 22 27 33
|
seqcaopr |
|
35 |
|
eqid |
|
36 |
1 3 2 35
|
mulgnn |
|
37 |
14 29 36
|
syl2anc |
|
38 |
|
eqid |
|
39 |
1 3 2 38
|
mulgnn |
|
40 |
14 17 39
|
syl2anc |
|
41 |
|
eqid |
|
42 |
1 3 2 41
|
mulgnn |
|
43 |
14 23 42
|
syl2anc |
|
44 |
40 43
|
oveq12d |
|
45 |
34 37 44
|
3eqtr4d |
|
46 |
4
|
ad2antrr |
|
47 |
|
simplr2 |
|
48 |
|
simplr3 |
|
49 |
46 47 48 28
|
syl3anc |
|
50 |
|
eqid |
|
51 |
1 50 2
|
mulg0 |
|
52 |
49 51
|
syl |
|
53 |
|
eqid |
|
54 |
53 50
|
mndidcl |
|
55 |
53 3 50
|
mndlid |
|
56 |
4 54 55
|
syl2anc2 |
|
57 |
56
|
ad2antrr |
|
58 |
52 57
|
eqtr4d |
|
59 |
|
simpr |
|
60 |
59
|
oveq1d |
|
61 |
59
|
oveq1d |
|
62 |
1 50 2
|
mulg0 |
|
63 |
47 62
|
syl |
|
64 |
61 63
|
eqtrd |
|
65 |
59
|
oveq1d |
|
66 |
1 50 2
|
mulg0 |
|
67 |
48 66
|
syl |
|
68 |
65 67
|
eqtrd |
|
69 |
64 68
|
oveq12d |
|
70 |
58 60 69
|
3eqtr4d |
|
71 |
|
simpr1 |
|
72 |
|
elnn0 |
|
73 |
71 72
|
sylib |
|
74 |
45 70 73
|
mpjaodan |
|