Metamath Proof Explorer


Theorem mulgnn0dir

Description: Sum of group multiples, generalized to NN0 . (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulgnndir.b B = Base G
mulgnndir.t · ˙ = G
mulgnndir.p + ˙ = + G
Assertion mulgnn0dir G Mnd M 0 N 0 X B M + N · ˙ X = M · ˙ X + ˙ N · ˙ X

Proof

Step Hyp Ref Expression
1 mulgnndir.b B = Base G
2 mulgnndir.t · ˙ = G
3 mulgnndir.p + ˙ = + G
4 mndsgrp Could not format ( G e. Mnd -> G e. Smgrp ) : No typesetting found for |- ( G e. Mnd -> G e. Smgrp ) with typecode |-
5 4 adantr Could not format ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> G e. Smgrp ) : No typesetting found for |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> G e. Smgrp ) with typecode |-
6 5 ad2antrr Could not format ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> G e. Smgrp ) : No typesetting found for |- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> G e. Smgrp ) with typecode |-
7 simplr G Mnd M 0 N 0 X B M N M
8 simpr G Mnd M 0 N 0 X B M N N
9 simpr3 G Mnd M 0 N 0 X B X B
10 9 ad2antrr G Mnd M 0 N 0 X B M N X B
11 1 2 3 mulgnndir Could not format ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) : No typesetting found for |- ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) with typecode |-
12 6 7 8 10 11 syl13anc G Mnd M 0 N 0 X B M N M + N · ˙ X = M · ˙ X + ˙ N · ˙ X
13 simpll G Mnd M 0 N 0 X B N = 0 G Mnd
14 simpr1 G Mnd M 0 N 0 X B M 0
15 14 adantr G Mnd M 0 N 0 X B N = 0 M 0
16 simplr3 G Mnd M 0 N 0 X B N = 0 X B
17 1 2 mulgnn0cl G Mnd M 0 X B M · ˙ X B
18 13 15 16 17 syl3anc G Mnd M 0 N 0 X B N = 0 M · ˙ X B
19 eqid 0 G = 0 G
20 1 3 19 mndrid G Mnd M · ˙ X B M · ˙ X + ˙ 0 G = M · ˙ X
21 13 18 20 syl2anc G Mnd M 0 N 0 X B N = 0 M · ˙ X + ˙ 0 G = M · ˙ X
22 simpr G Mnd M 0 N 0 X B N = 0 N = 0
23 22 oveq1d G Mnd M 0 N 0 X B N = 0 N · ˙ X = 0 · ˙ X
24 1 19 2 mulg0 X B 0 · ˙ X = 0 G
25 16 24 syl G Mnd M 0 N 0 X B N = 0 0 · ˙ X = 0 G
26 23 25 eqtrd G Mnd M 0 N 0 X B N = 0 N · ˙ X = 0 G
27 26 oveq2d G Mnd M 0 N 0 X B N = 0 M · ˙ X + ˙ N · ˙ X = M · ˙ X + ˙ 0 G
28 22 oveq2d G Mnd M 0 N 0 X B N = 0 M + N = M + 0
29 15 nn0cnd G Mnd M 0 N 0 X B N = 0 M
30 29 addid1d G Mnd M 0 N 0 X B N = 0 M + 0 = M
31 28 30 eqtrd G Mnd M 0 N 0 X B N = 0 M + N = M
32 31 oveq1d G Mnd M 0 N 0 X B N = 0 M + N · ˙ X = M · ˙ X
33 21 27 32 3eqtr4rd G Mnd M 0 N 0 X B N = 0 M + N · ˙ X = M · ˙ X + ˙ N · ˙ X
34 33 adantlr G Mnd M 0 N 0 X B M N = 0 M + N · ˙ X = M · ˙ X + ˙ N · ˙ X
35 simpr2 G Mnd M 0 N 0 X B N 0
36 elnn0 N 0 N N = 0
37 35 36 sylib G Mnd M 0 N 0 X B N N = 0
38 37 adantr G Mnd M 0 N 0 X B M N N = 0
39 12 34 38 mpjaodan G Mnd M 0 N 0 X B M M + N · ˙ X = M · ˙ X + ˙ N · ˙ X
40 simpll G Mnd M 0 N 0 X B M = 0 G Mnd
41 simplr2 G Mnd M 0 N 0 X B M = 0 N 0
42 simplr3 G Mnd M 0 N 0 X B M = 0 X B
43 1 2 mulgnn0cl G Mnd N 0 X B N · ˙ X B
44 40 41 42 43 syl3anc G Mnd M 0 N 0 X B M = 0 N · ˙ X B
45 1 3 19 mndlid G Mnd N · ˙ X B 0 G + ˙ N · ˙ X = N · ˙ X
46 40 44 45 syl2anc G Mnd M 0 N 0 X B M = 0 0 G + ˙ N · ˙ X = N · ˙ X
47 simpr G Mnd M 0 N 0 X B M = 0 M = 0
48 47 oveq1d G Mnd M 0 N 0 X B M = 0 M · ˙ X = 0 · ˙ X
49 42 24 syl G Mnd M 0 N 0 X B M = 0 0 · ˙ X = 0 G
50 48 49 eqtrd G Mnd M 0 N 0 X B M = 0 M · ˙ X = 0 G
51 50 oveq1d G Mnd M 0 N 0 X B M = 0 M · ˙ X + ˙ N · ˙ X = 0 G + ˙ N · ˙ X
52 47 oveq1d G Mnd M 0 N 0 X B M = 0 M + N = 0 + N
53 41 nn0cnd G Mnd M 0 N 0 X B M = 0 N
54 53 addid2d G Mnd M 0 N 0 X B M = 0 0 + N = N
55 52 54 eqtrd G Mnd M 0 N 0 X B M = 0 M + N = N
56 55 oveq1d G Mnd M 0 N 0 X B M = 0 M + N · ˙ X = N · ˙ X
57 46 51 56 3eqtr4rd G Mnd M 0 N 0 X B M = 0 M + N · ˙ X = M · ˙ X + ˙ N · ˙ X
58 elnn0 M 0 M M = 0
59 14 58 sylib G Mnd M 0 N 0 X B M M = 0
60 39 57 59 mpjaodan G Mnd M 0 N 0 X B M + N · ˙ X = M · ˙ X + ˙ N · ˙ X