Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnnsubcl.b |
|
2 |
|
mulgnnsubcl.t |
|
3 |
|
mulgnnsubcl.p |
|
4 |
|
mulgnnsubcl.g |
|
5 |
|
mulgnnsubcl.s |
|
6 |
|
mulgnnsubcl.c |
|
7 |
|
mulgnn0subcl.z |
|
8 |
|
mulgnn0subcl.c |
|
9 |
1 2 3 4 5 6
|
mulgnnsubcl |
|
10 |
9
|
3expa |
|
11 |
10
|
an32s |
|
12 |
11
|
3adantl2 |
|
13 |
|
oveq1 |
|
14 |
5
|
3ad2ant1 |
|
15 |
|
simp3 |
|
16 |
14 15
|
sseldd |
|
17 |
1 7 2
|
mulg0 |
|
18 |
16 17
|
syl |
|
19 |
13 18
|
sylan9eqr |
|
20 |
8
|
3ad2ant1 |
|
21 |
20
|
adantr |
|
22 |
19 21
|
eqeltrd |
|
23 |
|
simp2 |
|
24 |
|
elnn0 |
|
25 |
23 24
|
sylib |
|
26 |
12 22 25
|
mpjaodan |
|