Metamath Proof Explorer


Theorem mulgnn0z

Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses mulgnn0z.b B = Base G
mulgnn0z.t · ˙ = G
mulgnn0z.o 0 ˙ = 0 G
Assertion mulgnn0z G Mnd N 0 N · ˙ 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 mulgnn0z.b B = Base G
2 mulgnn0z.t · ˙ = G
3 mulgnn0z.o 0 ˙ = 0 G
4 elnn0 N 0 N N = 0
5 id N N
6 1 3 mndidcl G Mnd 0 ˙ B
7 eqid + G = + G
8 eqid seq 1 + G × 0 ˙ = seq 1 + G × 0 ˙
9 1 7 2 8 mulgnn N 0 ˙ B N · ˙ 0 ˙ = seq 1 + G × 0 ˙ N
10 5 6 9 syl2anr G Mnd N N · ˙ 0 ˙ = seq 1 + G × 0 ˙ N
11 1 7 3 mndlid G Mnd 0 ˙ B 0 ˙ + G 0 ˙ = 0 ˙
12 6 11 mpdan G Mnd 0 ˙ + G 0 ˙ = 0 ˙
13 12 adantr G Mnd N 0 ˙ + G 0 ˙ = 0 ˙
14 simpr G Mnd N N
15 nnuz = 1
16 14 15 eleqtrdi G Mnd N N 1
17 6 adantr G Mnd N 0 ˙ B
18 elfznn x 1 N x
19 fvconst2g 0 ˙ B x × 0 ˙ x = 0 ˙
20 17 18 19 syl2an G Mnd N x 1 N × 0 ˙ x = 0 ˙
21 13 16 20 seqid3 G Mnd N seq 1 + G × 0 ˙ N = 0 ˙
22 10 21 eqtrd G Mnd N N · ˙ 0 ˙ = 0 ˙
23 oveq1 N = 0 N · ˙ 0 ˙ = 0 · ˙ 0 ˙
24 1 3 2 mulg0 0 ˙ B 0 · ˙ 0 ˙ = 0 ˙
25 6 24 syl G Mnd 0 · ˙ 0 ˙ = 0 ˙
26 23 25 sylan9eqr G Mnd N = 0 N · ˙ 0 ˙ = 0 ˙
27 22 26 jaodan G Mnd N N = 0 N · ˙ 0 ˙ = 0 ˙
28 4 27 sylan2b G Mnd N 0 N · ˙ 0 ˙ = 0 ˙