Database
BASIC ALGEBRAIC STRUCTURES
Groups
Group multiple operation
mulgnncl
Metamath Proof Explorer
Description: Closure of the group multiple (exponentiation) operation for a positive
multiplier in a magma. (Contributed by Mario Carneiro , 11-Dec-2014)
(Revised by AV , 29-Aug-2021)
Ref
Expression
Hypotheses
mulgnncl.b
⊢ B = Base G
mulgnncl.t
⊢ · ˙ = ⋅ G
Assertion
mulgnncl
⊢ G ∈ Mgm ∧ N ∈ ℕ ∧ X ∈ B → N · ˙ X ∈ B
Proof
Step
Hyp
Ref
Expression
1
mulgnncl.b
⊢ B = Base G
2
mulgnncl.t
⊢ · ˙ = ⋅ G
3
eqid
⊢ + G = + G
4
id
⊢ G ∈ Mgm → G ∈ Mgm
5
ssidd
⊢ G ∈ Mgm → B ⊆ B
6
1 3
mgmcl
⊢ G ∈ Mgm ∧ x ∈ B ∧ y ∈ B → x + G y ∈ B
7
1 2 3 4 5 6
mulgnnsubcl
⊢ G ∈ Mgm ∧ N ∈ ℕ ∧ X ∈ B → N · ˙ X ∈ B