Metamath Proof Explorer


Theorem mulgnncl

Description: Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014) (Revised by AV, 29-Aug-2021)

Ref Expression
Hypotheses mulgnncl.b B = Base G
mulgnncl.t · ˙ = G
Assertion mulgnncl G Mgm N X B N · ˙ X B

Proof

Step Hyp Ref Expression
1 mulgnncl.b B = Base G
2 mulgnncl.t · ˙ = G
3 eqid + G = + G
4 id G Mgm G Mgm
5 ssidd G Mgm B B
6 1 3 mgmcl G Mgm x B y B x + G y B
7 1 2 3 4 5 6 mulgnnsubcl G Mgm N X B N · ˙ X B