Metamath Proof Explorer


Theorem mulgnndir

Description: Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014) (Revised by AV, 29-Aug-2021)

Ref Expression
Hypotheses mulgnndir.b B = Base G
mulgnndir.t · ˙ = G
mulgnndir.p + ˙ = + G
Assertion mulgnndir G Smgrp M N X B M + N · ˙ X = M · ˙ X + ˙ N · ˙ X

Proof

Step Hyp Ref Expression
1 mulgnndir.b B = Base G
2 mulgnndir.t · ˙ = G
3 mulgnndir.p + ˙ = + G
4 sgrpmgm G Smgrp G Mgm
5 1 3 mgmcl G Mgm x B y B x + ˙ y B
6 4 5 syl3an1 G Smgrp x B y B x + ˙ y B
7 6 3expb G Smgrp x B y B x + ˙ y B
8 7 adantlr G Smgrp M N X B x B y B x + ˙ y B
9 1 3 sgrpass G Smgrp x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
10 9 adantlr G Smgrp M N X B x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
11 simpr2 G Smgrp M N X B N
12 nnuz = 1
13 11 12 eleqtrdi G Smgrp M N X B N 1
14 simpr1 G Smgrp M N X B M
15 14 nnzd G Smgrp M N X B M
16 eluzadd N 1 M N + M 1 + M
17 13 15 16 syl2anc G Smgrp M N X B N + M 1 + M
18 14 nncnd G Smgrp M N X B M
19 11 nncnd G Smgrp M N X B N
20 18 19 addcomd G Smgrp M N X B M + N = N + M
21 ax-1cn 1
22 addcom M 1 M + 1 = 1 + M
23 18 21 22 sylancl G Smgrp M N X B M + 1 = 1 + M
24 23 fveq2d G Smgrp M N X B M + 1 = 1 + M
25 17 20 24 3eltr4d G Smgrp M N X B M + N M + 1
26 14 12 eleqtrdi G Smgrp M N X B M 1
27 simpr3 G Smgrp M N X B X B
28 elfznn x 1 M + N x
29 fvconst2g X B x × X x = X
30 27 28 29 syl2an G Smgrp M N X B x 1 M + N × X x = X
31 27 adantr G Smgrp M N X B x 1 M + N X B
32 30 31 eqeltrd G Smgrp M N X B x 1 M + N × X x B
33 8 10 25 26 32 seqsplit G Smgrp M N X B seq 1 + ˙ × X M + N = seq 1 + ˙ × X M + ˙ seq M + 1 + ˙ × X M + N
34 nnaddcl M N M + N
35 14 11 34 syl2anc G Smgrp M N X B M + N
36 eqid seq 1 + ˙ × X = seq 1 + ˙ × X
37 1 3 2 36 mulgnn M + N X B M + N · ˙ X = seq 1 + ˙ × X M + N
38 35 27 37 syl2anc G Smgrp M N X B M + N · ˙ X = seq 1 + ˙ × X M + N
39 1 3 2 36 mulgnn M X B M · ˙ X = seq 1 + ˙ × X M
40 14 27 39 syl2anc G Smgrp M N X B M · ˙ X = seq 1 + ˙ × X M
41 elfznn x 1 N x
42 27 41 29 syl2an G Smgrp M N X B x 1 N × X x = X
43 27 adantr G Smgrp M N X B x 1 N X B
44 nnaddcl x M x + M
45 41 14 44 syl2anr G Smgrp M N X B x 1 N x + M
46 fvconst2g X B x + M × X x + M = X
47 43 45 46 syl2anc G Smgrp M N X B x 1 N × X x + M = X
48 42 47 eqtr4d G Smgrp M N X B x 1 N × X x = × X x + M
49 13 15 48 seqshft2 G Smgrp M N X B seq 1 + ˙ × X N = seq 1 + M + ˙ × X N + M
50 1 3 2 36 mulgnn N X B N · ˙ X = seq 1 + ˙ × X N
51 11 27 50 syl2anc G Smgrp M N X B N · ˙ X = seq 1 + ˙ × X N
52 23 seqeq1d G Smgrp M N X B seq M + 1 + ˙ × X = seq 1 + M + ˙ × X
53 52 20 fveq12d G Smgrp M N X B seq M + 1 + ˙ × X M + N = seq 1 + M + ˙ × X N + M
54 49 51 53 3eqtr4d G Smgrp M N X B N · ˙ X = seq M + 1 + ˙ × X M + N
55 40 54 oveq12d G Smgrp M N X B M · ˙ X + ˙ N · ˙ X = seq 1 + ˙ × X M + ˙ seq M + 1 + ˙ × X M + N
56 33 38 55 3eqtr4d G Smgrp M N X B M + N · ˙ X = M · ˙ X + ˙ N · ˙ X