Metamath Proof Explorer


Theorem mulgnngsum

Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023)

Ref Expression
Hypotheses mulgnngsum.b B=BaseG
mulgnngsum.t ·˙=G
mulgnngsum.f F=x1NX
Assertion mulgnngsum NXBN·˙X=GF

Proof

Step Hyp Ref Expression
1 mulgnngsum.b B=BaseG
2 mulgnngsum.t ·˙=G
3 mulgnngsum.f F=x1NX
4 elnnuz NN1
5 4 biimpi NN1
6 5 adantr NXBN1
7 3 a1i NXBi1NF=x1NX
8 eqidd NXBi1Nx=iX=X
9 simpr NXBi1Ni1N
10 simpr NXBXB
11 10 adantr NXBi1NXB
12 7 8 9 11 fvmptd NXBi1NFi=X
13 elfznn i1Ni
14 fvconst2g XBi×Xi=X
15 10 13 14 syl2an NXBi1N×Xi=X
16 12 15 eqtr4d NXBi1NFi=×Xi
17 6 16 seqfveq NXBseq1+GFN=seq1+G×XN
18 eqid +G=+G
19 elfvex XBaseGGV
20 19 1 eleq2s XBGV
21 20 adantl NXBGV
22 10 adantr NXBx1NXB
23 22 3 fmptd NXBF:1NB
24 1 18 21 6 23 gsumval2 NXBGF=seq1+GFN
25 eqid seq1+G×X=seq1+G×X
26 1 18 2 25 mulgnn NXBN·˙X=seq1+G×XN
27 17 24 26 3eqtr4rd NXBN·˙X=GF