Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgnngsum.b | |
|
mulgnngsum.t | |
||
mulgnngsum.f | |
||
Assertion | mulgnngsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnngsum.b | |
|
2 | mulgnngsum.t | |
|
3 | mulgnngsum.f | |
|
4 | elnnuz | |
|
5 | 4 | biimpi | |
6 | 5 | adantr | |
7 | 3 | a1i | |
8 | eqidd | |
|
9 | simpr | |
|
10 | simpr | |
|
11 | 10 | adantr | |
12 | 7 8 9 11 | fvmptd | |
13 | elfznn | |
|
14 | fvconst2g | |
|
15 | 10 13 14 | syl2an | |
16 | 12 15 | eqtr4d | |
17 | 6 16 | seqfveq | |
18 | eqid | |
|
19 | elfvex | |
|
20 | 19 1 | eleq2s | |
21 | 20 | adantl | |
22 | 10 | adantr | |
23 | 22 3 | fmptd | |
24 | 1 18 21 6 23 | gsumval2 | |
25 | eqid | |
|
26 | 1 18 2 25 | mulgnn | |
27 | 17 24 26 | 3eqtr4rd | |