Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnngsum.b |
|
2 |
|
mulgnngsum.t |
|
3 |
|
mulgnngsum.f |
|
4 |
|
elnnuz |
|
5 |
4
|
biimpi |
|
6 |
5
|
adantr |
|
7 |
3
|
a1i |
|
8 |
|
eqidd |
|
9 |
|
simpr |
|
10 |
|
simpr |
|
11 |
10
|
adantr |
|
12 |
7 8 9 11
|
fvmptd |
|
13 |
|
elfznn |
|
14 |
|
fvconst2g |
|
15 |
10 13 14
|
syl2an |
|
16 |
12 15
|
eqtr4d |
|
17 |
6 16
|
seqfveq |
|
18 |
|
eqid |
|
19 |
|
elfvex |
|
20 |
19 1
|
eleq2s |
|
21 |
20
|
adantl |
|
22 |
10
|
adantr |
|
23 |
22 3
|
fmptd |
|
24 |
1 18 21 6 23
|
gsumval2 |
|
25 |
|
eqid |
|
26 |
1 18 2 25
|
mulgnn |
|
27 |
17 24 26
|
3eqtr4rd |
|