Metamath Proof Explorer


Theorem mulgnnp1

Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulg1.b B = Base G
mulg1.m · ˙ = G
mulgnnp1.p + ˙ = + G
Assertion mulgnnp1 N X B N + 1 · ˙ X = N · ˙ X + ˙ X

Proof

Step Hyp Ref Expression
1 mulg1.b B = Base G
2 mulg1.m · ˙ = G
3 mulgnnp1.p + ˙ = + G
4 simpl N X B N
5 nnuz = 1
6 4 5 eleqtrdi N X B N 1
7 seqp1 N 1 seq 1 + ˙ × X N + 1 = seq 1 + ˙ × X N + ˙ × X N + 1
8 6 7 syl N X B seq 1 + ˙ × X N + 1 = seq 1 + ˙ × X N + ˙ × X N + 1
9 id X B X B
10 peano2nn N N + 1
11 fvconst2g X B N + 1 × X N + 1 = X
12 9 10 11 syl2anr N X B × X N + 1 = X
13 12 oveq2d N X B seq 1 + ˙ × X N + ˙ × X N + 1 = seq 1 + ˙ × X N + ˙ X
14 8 13 eqtrd N X B seq 1 + ˙ × X N + 1 = seq 1 + ˙ × X N + ˙ X
15 eqid seq 1 + ˙ × X = seq 1 + ˙ × X
16 1 3 2 15 mulgnn N + 1 X B N + 1 · ˙ X = seq 1 + ˙ × X N + 1
17 10 16 sylan N X B N + 1 · ˙ X = seq 1 + ˙ × X N + 1
18 1 3 2 15 mulgnn N X B N · ˙ X = seq 1 + ˙ × X N
19 18 oveq1d N X B N · ˙ X + ˙ X = seq 1 + ˙ × X N + ˙ X
20 14 17 19 3eqtr4d N X B N + 1 · ˙ X = N · ˙ X + ˙ X