Metamath Proof Explorer


Theorem mulgnnsubcl

Description: Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mulgnnsubcl.b B = Base G
mulgnnsubcl.t · ˙ = G
mulgnnsubcl.p + ˙ = + G
mulgnnsubcl.g φ G V
mulgnnsubcl.s φ S B
mulgnnsubcl.c φ x S y S x + ˙ y S
Assertion mulgnnsubcl φ N X S N · ˙ X S

Proof

Step Hyp Ref Expression
1 mulgnnsubcl.b B = Base G
2 mulgnnsubcl.t · ˙ = G
3 mulgnnsubcl.p + ˙ = + G
4 mulgnnsubcl.g φ G V
5 mulgnnsubcl.s φ S B
6 mulgnnsubcl.c φ x S y S x + ˙ y S
7 simp2 φ N X S N
8 5 3ad2ant1 φ N X S S B
9 simp3 φ N X S X S
10 8 9 sseldd φ N X S X B
11 eqid seq 1 + ˙ × X = seq 1 + ˙ × X
12 1 3 2 11 mulgnn N X B N · ˙ X = seq 1 + ˙ × X N
13 7 10 12 syl2anc φ N X S N · ˙ X = seq 1 + ˙ × X N
14 nnuz = 1
15 7 14 eleqtrdi φ N X S N 1
16 elfznn x 1 N x
17 fvconst2g X S x × X x = X
18 9 16 17 syl2an φ N X S x 1 N × X x = X
19 simpl3 φ N X S x 1 N X S
20 18 19 eqeltrd φ N X S x 1 N × X x S
21 6 3expb φ x S y S x + ˙ y S
22 21 3ad2antl1 φ N X S x S y S x + ˙ y S
23 15 20 22 seqcl φ N X S seq 1 + ˙ × X N S
24 13 23 eqeltrd φ N X S N · ˙ X S