Metamath Proof Explorer


Theorem mulgp1

Description: Group multiple (exponentiation) operation at a successor, extended to ZZ . (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulgnndir.b B = Base G
mulgnndir.t · ˙ = G
mulgnndir.p + ˙ = + G
Assertion mulgp1 G Grp N X B N + 1 · ˙ X = N · ˙ X + ˙ X

Proof

Step Hyp Ref Expression
1 mulgnndir.b B = Base G
2 mulgnndir.t · ˙ = G
3 mulgnndir.p + ˙ = + G
4 1z 1
5 1 2 3 mulgdir G Grp N 1 X B N + 1 · ˙ X = N · ˙ X + ˙ 1 · ˙ X
6 4 5 mp3anr2 G Grp N X B N + 1 · ˙ X = N · ˙ X + ˙ 1 · ˙ X
7 6 3impb G Grp N X B N + 1 · ˙ X = N · ˙ X + ˙ 1 · ˙ X
8 1 2 mulg1 X B 1 · ˙ X = X
9 8 3ad2ant3 G Grp N X B 1 · ˙ X = X
10 9 oveq2d G Grp N X B N · ˙ X + ˙ 1 · ˙ X = N · ˙ X + ˙ X
11 7 10 eqtrd G Grp N X B N + 1 · ˙ X = N · ˙ X + ˙ X