Metamath Proof Explorer


Theorem mulgpropd

Description: Two structures with the same group-nature have the same group multiple function. K is expected to either be _V (when strong equality is available) or B (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mulgpropd.m · ˙ = G
mulgpropd.n × ˙ = H
mulgpropd.b1 φ B = Base G
mulgpropd.b2 φ B = Base H
mulgpropd.i φ B K
mulgpropd.k φ x K y K x + G y K
mulgpropd.e φ x K y K x + G y = x + H y
Assertion mulgpropd φ · ˙ = × ˙

Proof

Step Hyp Ref Expression
1 mulgpropd.m · ˙ = G
2 mulgpropd.n × ˙ = H
3 mulgpropd.b1 φ B = Base G
4 mulgpropd.b2 φ B = Base H
5 mulgpropd.i φ B K
6 mulgpropd.k φ x K y K x + G y K
7 mulgpropd.e φ x K y K x + G y = x + H y
8 ssel B K x B x K
9 ssel B K y B y K
10 8 9 anim12d B K x B y B x K y K
11 5 10 syl φ x B y B x K y K
12 11 imp φ x B y B x K y K
13 12 7 syldan φ x B y B x + G y = x + H y
14 3 4 13 grpidpropd φ 0 G = 0 H
15 14 3ad2ant1 φ a b B 0 G = 0 H
16 1zzd φ a b B 1
17 vex b V
18 17 fvconst2 x × b x = b
19 nnuz = 1
20 19 eqcomi 1 =
21 18 20 eleq2s x 1 × b x = b
22 21 adantl φ a b B x 1 × b x = b
23 5 3ad2ant1 φ a b B B K
24 simp3 φ a b B b B
25 23 24 sseldd φ a b B b K
26 25 adantr φ a b B x 1 b K
27 22 26 eqeltrd φ a b B x 1 × b x K
28 6 3ad2antl1 φ a b B x K y K x + G y K
29 7 3ad2antl1 φ a b B x K y K x + G y = x + H y
30 16 27 28 29 seqfeq3 φ a b B seq 1 + G × b = seq 1 + H × b
31 30 fveq1d φ a b B seq 1 + G × b a = seq 1 + H × b a
32 3 4 13 grpinvpropd φ inv g G = inv g H
33 32 3ad2ant1 φ a b B inv g G = inv g H
34 30 fveq1d φ a b B seq 1 + G × b a = seq 1 + H × b a
35 33 34 fveq12d φ a b B inv g G seq 1 + G × b a = inv g H seq 1 + H × b a
36 31 35 ifeq12d φ a b B if 0 < a seq 1 + G × b a inv g G seq 1 + G × b a = if 0 < a seq 1 + H × b a inv g H seq 1 + H × b a
37 15 36 ifeq12d φ a b B if a = 0 0 G if 0 < a seq 1 + G × b a inv g G seq 1 + G × b a = if a = 0 0 H if 0 < a seq 1 + H × b a inv g H seq 1 + H × b a
38 37 mpoeq3dva φ a , b B if a = 0 0 G if 0 < a seq 1 + G × b a inv g G seq 1 + G × b a = a , b B if a = 0 0 H if 0 < a seq 1 + H × b a inv g H seq 1 + H × b a
39 eqidd φ =
40 eqidd φ if a = 0 0 G if 0 < a seq 1 + G × b a inv g G seq 1 + G × b a = if a = 0 0 G if 0 < a seq 1 + G × b a inv g G seq 1 + G × b a
41 39 3 40 mpoeq123dv φ a , b B if a = 0 0 G if 0 < a seq 1 + G × b a inv g G seq 1 + G × b a = a , b Base G if a = 0 0 G if 0 < a seq 1 + G × b a inv g G seq 1 + G × b a
42 eqidd φ if a = 0 0 H if 0 < a seq 1 + H × b a inv g H seq 1 + H × b a = if a = 0 0 H if 0 < a seq 1 + H × b a inv g H seq 1 + H × b a
43 39 4 42 mpoeq123dv φ a , b B if a = 0 0 H if 0 < a seq 1 + H × b a inv g H seq 1 + H × b a = a , b Base H if a = 0 0 H if 0 < a seq 1 + H × b a inv g H seq 1 + H × b a
44 38 41 43 3eqtr3d φ a , b Base G if a = 0 0 G if 0 < a seq 1 + G × b a inv g G seq 1 + G × b a = a , b Base H if a = 0 0 H if 0 < a seq 1 + H × b a inv g H seq 1 + H × b a
45 eqid Base G = Base G
46 eqid + G = + G
47 eqid 0 G = 0 G
48 eqid inv g G = inv g G
49 45 46 47 48 1 mulgfval · ˙ = a , b Base G if a = 0 0 G if 0 < a seq 1 + G × b a inv g G seq 1 + G × b a
50 eqid Base H = Base H
51 eqid + H = + H
52 eqid 0 H = 0 H
53 eqid inv g H = inv g H
54 50 51 52 53 2 mulgfval × ˙ = a , b Base H if a = 0 0 H if 0 < a seq 1 + H × b a inv g H seq 1 + H × b a
55 44 49 54 3eqtr4g φ · ˙ = × ˙