Step |
Hyp |
Ref |
Expression |
1 |
|
mulgpropd.m |
|
2 |
|
mulgpropd.n |
|
3 |
|
mulgpropd.b1 |
|
4 |
|
mulgpropd.b2 |
|
5 |
|
mulgpropd.i |
|
6 |
|
mulgpropd.k |
|
7 |
|
mulgpropd.e |
|
8 |
|
ssel |
|
9 |
|
ssel |
|
10 |
8 9
|
anim12d |
|
11 |
5 10
|
syl |
|
12 |
11
|
imp |
|
13 |
12 7
|
syldan |
|
14 |
3 4 13
|
grpidpropd |
|
15 |
14
|
3ad2ant1 |
|
16 |
|
1zzd |
|
17 |
|
vex |
|
18 |
17
|
fvconst2 |
|
19 |
|
nnuz |
|
20 |
19
|
eqcomi |
|
21 |
18 20
|
eleq2s |
|
22 |
21
|
adantl |
|
23 |
5
|
3ad2ant1 |
|
24 |
|
simp3 |
|
25 |
23 24
|
sseldd |
|
26 |
25
|
adantr |
|
27 |
22 26
|
eqeltrd |
|
28 |
6
|
3ad2antl1 |
|
29 |
7
|
3ad2antl1 |
|
30 |
16 27 28 29
|
seqfeq3 |
|
31 |
30
|
fveq1d |
|
32 |
3 4 13
|
grpinvpropd |
|
33 |
32
|
3ad2ant1 |
|
34 |
30
|
fveq1d |
|
35 |
33 34
|
fveq12d |
|
36 |
31 35
|
ifeq12d |
|
37 |
15 36
|
ifeq12d |
|
38 |
37
|
mpoeq3dva |
|
39 |
|
eqidd |
|
40 |
|
eqidd |
|
41 |
39 3 40
|
mpoeq123dv |
|
42 |
|
eqidd |
|
43 |
39 4 42
|
mpoeq123dv |
|
44 |
38 41 43
|
3eqtr3d |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
45 46 47 48 1
|
mulgfval |
|
50 |
|
eqid |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
50 51 52 53 2
|
mulgfval |
|
55 |
44 49 54
|
3eqtr4g |
|