Metamath Proof Explorer


Theorem mulgrhm2

Description: The powers of the element 1 give the unique ring homomorphism from ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Hypotheses mulgghm2.m · ˙ = R
mulgghm2.f F = n n · ˙ 1 ˙
mulgrhm.1 1 ˙ = 1 R
Assertion mulgrhm2 R Ring ring RingHom R = F

Proof

Step Hyp Ref Expression
1 mulgghm2.m · ˙ = R
2 mulgghm2.f F = n n · ˙ 1 ˙
3 mulgrhm.1 1 ˙ = 1 R
4 zringbas = Base ring
5 eqid Base R = Base R
6 4 5 rhmf f ring RingHom R f : Base R
7 6 adantl R Ring f ring RingHom R f : Base R
8 7 feqmptd R Ring f ring RingHom R f = n f n
9 rhmghm f ring RingHom R f ring GrpHom R
10 9 ad2antlr R Ring f ring RingHom R n f ring GrpHom R
11 simpr R Ring f ring RingHom R n n
12 1zzd R Ring f ring RingHom R n 1
13 eqid ring = ring
14 4 13 1 ghmmulg f ring GrpHom R n 1 f n ring 1 = n · ˙ f 1
15 10 11 12 14 syl3anc R Ring f ring RingHom R n f n ring 1 = n · ˙ f 1
16 ax-1cn 1
17 cnfldmulg n 1 n fld 1 = n 1
18 16 17 mpan2 n n fld 1 = n 1
19 1z 1
20 18 adantr n 1 n fld 1 = n 1
21 zringmulg n 1 n ring 1 = n 1
22 20 21 eqtr4d n 1 n fld 1 = n ring 1
23 19 22 mpan2 n n fld 1 = n ring 1
24 zcn n n
25 24 mulid1d n n 1 = n
26 18 23 25 3eqtr3d n n ring 1 = n
27 26 adantl R Ring f ring RingHom R n n ring 1 = n
28 27 fveq2d R Ring f ring RingHom R n f n ring 1 = f n
29 zring1 1 = 1 ring
30 29 3 rhm1 f ring RingHom R f 1 = 1 ˙
31 30 ad2antlr R Ring f ring RingHom R n f 1 = 1 ˙
32 31 oveq2d R Ring f ring RingHom R n n · ˙ f 1 = n · ˙ 1 ˙
33 15 28 32 3eqtr3d R Ring f ring RingHom R n f n = n · ˙ 1 ˙
34 33 mpteq2dva R Ring f ring RingHom R n f n = n n · ˙ 1 ˙
35 8 34 eqtrd R Ring f ring RingHom R f = n n · ˙ 1 ˙
36 35 2 eqtr4di R Ring f ring RingHom R f = F
37 velsn f F f = F
38 36 37 sylibr R Ring f ring RingHom R f F
39 38 ex R Ring f ring RingHom R f F
40 39 ssrdv R Ring ring RingHom R F
41 1 2 3 mulgrhm R Ring F ring RingHom R
42 41 snssd R Ring F ring RingHom R
43 40 42 eqssd R Ring ring RingHom R = F