Step |
Hyp |
Ref |
Expression |
1 |
|
ltrelsr |
|
2 |
1
|
brel |
|
3 |
2
|
simprd |
|
4 |
1
|
brel |
|
5 |
4
|
simprd |
|
6 |
3 5
|
anim12i |
|
7 |
|
df-nr |
|
8 |
|
breq2 |
|
9 |
8
|
anbi1d |
|
10 |
|
oveq1 |
|
11 |
10
|
breq2d |
|
12 |
9 11
|
imbi12d |
|
13 |
|
breq2 |
|
14 |
13
|
anbi2d |
|
15 |
|
oveq2 |
|
16 |
15
|
breq2d |
|
17 |
14 16
|
imbi12d |
|
18 |
|
gt0srpr |
|
19 |
|
gt0srpr |
|
20 |
18 19
|
anbi12i |
|
21 |
|
simprr |
|
22 |
|
mulclpr |
|
23 |
|
mulclpr |
|
24 |
|
addclpr |
|
25 |
22 23 24
|
syl2an |
|
26 |
25
|
an4s |
|
27 |
|
ltexpri |
|
28 |
|
ltexpri |
|
29 |
|
mulclpr |
|
30 |
|
oveq12 |
|
31 |
30
|
oveq1d |
|
32 |
|
distrpr |
|
33 |
|
oveq2 |
|
34 |
32 33
|
eqtr3id |
|
35 |
34
|
oveq1d |
|
36 |
|
vex |
|
37 |
|
vex |
|
38 |
|
vex |
|
39 |
|
mulcompr |
|
40 |
|
distrpr |
|
41 |
36 37 38 39 40
|
caovdir |
|
42 |
|
vex |
|
43 |
36 37 42 39 40
|
caovdir |
|
44 |
41 43
|
oveq12i |
|
45 |
|
distrpr |
|
46 |
|
ovex |
|
47 |
|
ovex |
|
48 |
|
ovex |
|
49 |
|
addcompr |
|
50 |
|
addasspr |
|
51 |
|
ovex |
|
52 |
46 47 48 49 50 51
|
caov4 |
|
53 |
44 45 52
|
3eqtr4i |
|
54 |
|
ovex |
|
55 |
48 54 51 49 50
|
caov12 |
|
56 |
35 53 55
|
3eqtr4g |
|
57 |
|
oveq1 |
|
58 |
41 57
|
eqtr3id |
|
59 |
56 58
|
oveqan12rd |
|
60 |
31 59
|
eqtr3d |
|
61 |
|
addasspr |
|
62 |
|
addcompr |
|
63 |
61 62
|
eqtr3i |
|
64 |
|
addasspr |
|
65 |
|
ovex |
|
66 |
|
ovex |
|
67 |
48 65 66 49 50
|
caov32 |
|
68 |
|
addasspr |
|
69 |
68
|
oveq2i |
|
70 |
64 67 69
|
3eqtr4i |
|
71 |
60 63 70
|
3eqtr3g |
|
72 |
|
addcanpr |
|
73 |
71 72
|
syl5 |
|
74 |
|
eqcom |
|
75 |
|
ltaddpr2 |
|
76 |
74 75
|
syl5bi |
|
77 |
76
|
adantl |
|
78 |
73 77
|
syld |
|
79 |
29 78
|
sylan |
|
80 |
79
|
a1d |
|
81 |
80
|
exp4a |
|
82 |
81
|
com34 |
|
83 |
82
|
rexlimdv |
|
84 |
83
|
expl |
|
85 |
84
|
com24 |
|
86 |
85
|
rexlimiv |
|
87 |
27 28 86
|
syl2im |
|
88 |
87
|
imp |
|
89 |
88
|
com12 |
|
90 |
21 26 89
|
syl2anc |
|
91 |
|
mulsrpr |
|
92 |
91
|
breq2d |
|
93 |
|
gt0srpr |
|
94 |
92 93
|
bitrdi |
|
95 |
90 94
|
sylibrd |
|
96 |
20 95
|
syl5bi |
|
97 |
7 12 17 96
|
2ecoptocl |
|
98 |
6 97
|
mpcom |
|