Metamath Proof Explorer


Theorem mulgt1

Description: The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005) (Proof shortened by SN, 29-Jun-2025)

Ref Expression
Assertion mulgt1 A B 1 < A 1 < B 1 < A B

Proof

Step Hyp Ref Expression
1 1red A B 1 < A 1 < B 1
2 simpll A B 1 < A 1 < B A
3 remulcl A B A B
4 3 adantr A B 1 < A 1 < B A B
5 simprl A B 1 < A 1 < B 1 < A
6 simprr A B 1 < A 1 < B 1 < B
7 0red A B 1 < A 1 < B 0
8 0lt1 0 < 1
9 8 a1i A B 1 < A 1 < B 0 < 1
10 7 1 2 9 5 lttrd A B 1 < A 1 < B 0 < A
11 ltmulgt11 A B 0 < A 1 < B A < A B
12 11 3expa A B 0 < A 1 < B A < A B
13 10 12 syldan A B 1 < A 1 < B 1 < B A < A B
14 6 13 mpbid A B 1 < A 1 < B A < A B
15 1 2 4 5 14 lttrd A B 1 < A 1 < B 1 < A B