Metamath Proof Explorer


Theorem mulgt1

Description: The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005)

Ref Expression
Assertion mulgt1 A B 1 < A 1 < B 1 < A B

Proof

Step Hyp Ref Expression
1 simpl 1 < A 1 < B 1 < A
2 1 a1i A B 1 < A 1 < B 1 < A
3 0lt1 0 < 1
4 0re 0
5 1re 1
6 lttr 0 1 A 0 < 1 1 < A 0 < A
7 4 5 6 mp3an12 A 0 < 1 1 < A 0 < A
8 3 7 mpani A 1 < A 0 < A
9 8 adantr A B 1 < A 0 < A
10 ltmul2 1 B A 0 < A 1 < B A 1 < A B
11 10 biimpd 1 B A 0 < A 1 < B A 1 < A B
12 5 11 mp3an1 B A 0 < A 1 < B A 1 < A B
13 12 exp32 B A 0 < A 1 < B A 1 < A B
14 13 impcom A B 0 < A 1 < B A 1 < A B
15 9 14 syld A B 1 < A 1 < B A 1 < A B
16 15 impd A B 1 < A 1 < B A 1 < A B
17 ax-1rid A A 1 = A
18 17 adantr A B A 1 = A
19 18 breq1d A B A 1 < A B A < A B
20 16 19 sylibd A B 1 < A 1 < B A < A B
21 2 20 jcad A B 1 < A 1 < B 1 < A A < A B
22 remulcl A B A B
23 lttr 1 A A B 1 < A A < A B 1 < A B
24 5 23 mp3an1 A A B 1 < A A < A B 1 < A B
25 22 24 syldan A B 1 < A A < A B 1 < A B
26 21 25 syld A B 1 < A 1 < B 1 < A B
27 26 imp A B 1 < A 1 < B 1 < A B