Metamath Proof Explorer


Theorem mulgt1d

Description: The product of two numbers greater than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltp1d.1 φ A
divgt0d.2 φ B
mulgt1d.3 φ 1 < A
mulgt1d.4 φ 1 < B
Assertion mulgt1d φ 1 < A B

Proof

Step Hyp Ref Expression
1 ltp1d.1 φ A
2 divgt0d.2 φ B
3 mulgt1d.3 φ 1 < A
4 mulgt1d.4 φ 1 < B
5 mulgt1 A B 1 < A 1 < B 1 < A B
6 1 2 3 4 5 syl22anc φ 1 < A B