Metamath Proof Explorer


Theorem mulgval

Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulgval.b B = Base G
mulgval.p + ˙ = + G
mulgval.o 0 ˙ = 0 G
mulgval.i I = inv g G
mulgval.t · ˙ = G
mulgval.s S = seq 1 + ˙ × X
Assertion mulgval N X B N · ˙ X = if N = 0 0 ˙ if 0 < N S N I S N

Proof

Step Hyp Ref Expression
1 mulgval.b B = Base G
2 mulgval.p + ˙ = + G
3 mulgval.o 0 ˙ = 0 G
4 mulgval.i I = inv g G
5 mulgval.t · ˙ = G
6 mulgval.s S = seq 1 + ˙ × X
7 simpl n = N x = X n = N
8 7 eqeq1d n = N x = X n = 0 N = 0
9 7 breq2d n = N x = X 0 < n 0 < N
10 simpr n = N x = X x = X
11 10 sneqd n = N x = X x = X
12 11 xpeq2d n = N x = X × x = × X
13 12 seqeq3d n = N x = X seq 1 + ˙ × x = seq 1 + ˙ × X
14 13 6 eqtr4di n = N x = X seq 1 + ˙ × x = S
15 14 7 fveq12d n = N x = X seq 1 + ˙ × x n = S N
16 7 negeqd n = N x = X n = N
17 14 16 fveq12d n = N x = X seq 1 + ˙ × x n = S N
18 17 fveq2d n = N x = X I seq 1 + ˙ × x n = I S N
19 9 15 18 ifbieq12d n = N x = X if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n = if 0 < N S N I S N
20 8 19 ifbieq2d n = N x = X if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n = if N = 0 0 ˙ if 0 < N S N I S N
21 1 2 3 4 5 mulgfval · ˙ = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
22 3 fvexi 0 ˙ V
23 fvex S N V
24 fvex I S N V
25 23 24 ifex if 0 < N S N I S N V
26 22 25 ifex if N = 0 0 ˙ if 0 < N S N I S N V
27 20 21 26 ovmpoa N X B N · ˙ X = if N = 0 0 ˙ if 0 < N S N I S N