Metamath Proof Explorer


Theorem mulle0b

Description: A condition for multiplication to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013)

Ref Expression
Assertion mulle0b A B A B 0 A 0 0 B 0 A B 0

Proof

Step Hyp Ref Expression
1 remulcl A B A B
2 1 le0neg1d A B A B 0 0 A B
3 le0neg2 B 0 B B 0
4 3 anbi2d B A 0 0 B A 0 B 0
5 le0neg1 B B 0 0 B
6 5 anbi2d B 0 A B 0 0 A 0 B
7 4 6 orbi12d B A 0 0 B 0 A B 0 A 0 B 0 0 A 0 B
8 7 adantl A B A 0 0 B 0 A B 0 A 0 B 0 0 A 0 B
9 renegcl B B
10 mulge0b A B 0 A B A 0 B 0 0 A 0 B
11 9 10 sylan2 A B 0 A B A 0 B 0 0 A 0 B
12 recn A A
13 recn B B
14 mulneg2 A B A B = A B
15 14 breq2d A B 0 A B 0 A B
16 12 13 15 syl2an A B 0 A B 0 A B
17 8 11 16 3bitr2rd A B 0 A B A 0 0 B 0 A B 0
18 2 17 bitrd A B A B 0 A 0 0 B 0 A B 0