Metamath Proof Explorer


Theorem mullt0

Description: The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009)

Ref Expression
Assertion mullt0 A A < 0 B B < 0 0 < A B

Proof

Step Hyp Ref Expression
1 renegcl A A
2 1 adantr A A < 0 A
3 lt0neg1 A A < 0 0 < A
4 3 biimpa A A < 0 0 < A
5 2 4 jca A A < 0 A 0 < A
6 renegcl B B
7 6 adantr B B < 0 B
8 lt0neg1 B B < 0 0 < B
9 8 biimpa B B < 0 0 < B
10 7 9 jca B B < 0 B 0 < B
11 mulgt0 A 0 < A B 0 < B 0 < A B
12 5 10 11 syl2an A A < 0 B B < 0 0 < A B
13 recn A A
14 recn B B
15 mul2neg A B A B = A B
16 13 14 15 syl2an A B A B = A B
17 16 ad2ant2r A A < 0 B B < 0 A B = A B
18 12 17 breqtrd A A < 0 B B < 0 0 < A B