Metamath Proof Explorer


Theorem mulltgt0

Description: The product of a negative and a positive number is negative. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Assertion mulltgt0 A A < 0 B 0 < B A B < 0

Proof

Step Hyp Ref Expression
1 renegcl A A
2 1 ad2antrr A A < 0 B 0 < B A
3 lt0neg1 A A < 0 0 < A
4 3 biimpa A A < 0 0 < A
5 4 adantr A A < 0 B 0 < B 0 < A
6 simpr A A < 0 B 0 < B B 0 < B
7 mulgt0 A 0 < A B 0 < B 0 < A B
8 2 5 6 7 syl21anc A A < 0 B 0 < B 0 < A B
9 recn A A
10 9 ad2antrr A A < 0 B 0 < B A
11 recn B B
12 11 ad2antrl A A < 0 B 0 < B B
13 10 12 mulneg1d A A < 0 B 0 < B A B = A B
14 8 13 breqtrd A A < 0 B 0 < B 0 < A B
15 remulcl A B A B
16 15 ad2ant2r A A < 0 B 0 < B A B
17 16 lt0neg1d A A < 0 B 0 < B A B < 0 0 < A B
18 14 17 mpbird A A < 0 B 0 < B A B < 0