Step |
Hyp |
Ref |
Expression |
1 |
|
marepvcl.a |
|
2 |
|
marepvcl.b |
|
3 |
|
marepvcl.v |
|
4 |
|
ma1repvcl.1 |
|
5 |
|
mulmarep1el.0 |
|
6 |
|
mulmarep1el.e |
|
7 |
|
simp1 |
|
8 |
7
|
adantr |
|
9 |
|
simp2 |
|
10 |
9
|
adantr |
|
11 |
|
simp1 |
|
12 |
11
|
3ad2ant3 |
|
13 |
12
|
adantr |
|
14 |
|
simp2 |
|
15 |
14
|
3ad2ant3 |
|
16 |
15
|
adantr |
|
17 |
|
simpr |
|
18 |
1 2 3 4 5 6
|
mulmarep1el |
|
19 |
8 10 13 16 17 18
|
syl113anc |
|
20 |
19
|
mpteq2dva |
|
21 |
20
|
oveq2d |
|
22 |
|
neneq |
|
23 |
22
|
3ad2ant3 |
|
24 |
23
|
3ad2ant3 |
|
25 |
24
|
iffalsed |
|
26 |
25
|
mpteq2dv |
|
27 |
26
|
oveq2d |
|
28 |
|
ringmnd |
|
29 |
28
|
3ad2ant1 |
|
30 |
1 2
|
matrcl |
|
31 |
30
|
simpld |
|
32 |
31
|
3ad2ant1 |
|
33 |
32
|
3ad2ant2 |
|
34 |
|
eqcom |
|
35 |
|
ifbi |
|
36 |
|
oveq2 |
|
37 |
36
|
adantl |
|
38 |
37
|
ifeq1da |
|
39 |
35 38
|
eqtrd |
|
40 |
34 39
|
ax-mp |
|
41 |
40
|
mpteq2i |
|
42 |
2
|
eleq2i |
|
43 |
42
|
biimpi |
|
44 |
43
|
3ad2ant1 |
|
45 |
44
|
3ad2ant2 |
|
46 |
|
eqid |
|
47 |
1 46
|
matecl |
|
48 |
12 15 45 47
|
syl3anc |
|
49 |
5 29 33 15 41 48
|
gsummptif1n0 |
|
50 |
21 27 49
|
3eqtrd |
|