Metamath Proof Explorer


Theorem mulmarep1gsum1

Description: The sum of element by element multiplications of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvcl.a A = N Mat R
marepvcl.b B = Base A
marepvcl.v V = Base R N
ma1repvcl.1 1 ˙ = 1 A
mulmarep1el.0 0 ˙ = 0 R
mulmarep1el.e E = 1 ˙ N matRepV R C K
Assertion mulmarep1gsum1 R Ring X B C V K N I N J N J K R l N I X l R l E J = I X J

Proof

Step Hyp Ref Expression
1 marepvcl.a A = N Mat R
2 marepvcl.b B = Base A
3 marepvcl.v V = Base R N
4 ma1repvcl.1 1 ˙ = 1 A
5 mulmarep1el.0 0 ˙ = 0 R
6 mulmarep1el.e E = 1 ˙ N matRepV R C K
7 simp1 R Ring X B C V K N I N J N J K R Ring
8 7 adantr R Ring X B C V K N I N J N J K l N R Ring
9 simp2 R Ring X B C V K N I N J N J K X B C V K N
10 9 adantr R Ring X B C V K N I N J N J K l N X B C V K N
11 simp1 I N J N J K I N
12 11 3ad2ant3 R Ring X B C V K N I N J N J K I N
13 12 adantr R Ring X B C V K N I N J N J K l N I N
14 simp2 I N J N J K J N
15 14 3ad2ant3 R Ring X B C V K N I N J N J K J N
16 15 adantr R Ring X B C V K N I N J N J K l N J N
17 simpr R Ring X B C V K N I N J N J K l N l N
18 1 2 3 4 5 6 mulmarep1el R Ring X B C V K N I N J N l N I X l R l E J = if J = K I X l R C l if J = l I X l 0 ˙
19 8 10 13 16 17 18 syl113anc R Ring X B C V K N I N J N J K l N I X l R l E J = if J = K I X l R C l if J = l I X l 0 ˙
20 19 mpteq2dva R Ring X B C V K N I N J N J K l N I X l R l E J = l N if J = K I X l R C l if J = l I X l 0 ˙
21 20 oveq2d R Ring X B C V K N I N J N J K R l N I X l R l E J = R l N if J = K I X l R C l if J = l I X l 0 ˙
22 neneq J K ¬ J = K
23 22 3ad2ant3 I N J N J K ¬ J = K
24 23 3ad2ant3 R Ring X B C V K N I N J N J K ¬ J = K
25 24 iffalsed R Ring X B C V K N I N J N J K if J = K I X l R C l if J = l I X l 0 ˙ = if J = l I X l 0 ˙
26 25 mpteq2dv R Ring X B C V K N I N J N J K l N if J = K I X l R C l if J = l I X l 0 ˙ = l N if J = l I X l 0 ˙
27 26 oveq2d R Ring X B C V K N I N J N J K R l N if J = K I X l R C l if J = l I X l 0 ˙ = R l N if J = l I X l 0 ˙
28 ringmnd R Ring R Mnd
29 28 3ad2ant1 R Ring X B C V K N I N J N J K R Mnd
30 1 2 matrcl X B N Fin R V
31 30 simpld X B N Fin
32 31 3ad2ant1 X B C V K N N Fin
33 32 3ad2ant2 R Ring X B C V K N I N J N J K N Fin
34 eqcom J = l l = J
35 ifbi J = l l = J if J = l I X l 0 ˙ = if l = J I X l 0 ˙
36 oveq2 l = J I X l = I X J
37 36 adantl J = l l = J l = J I X l = I X J
38 37 ifeq1da J = l l = J if l = J I X l 0 ˙ = if l = J I X J 0 ˙
39 35 38 eqtrd J = l l = J if J = l I X l 0 ˙ = if l = J I X J 0 ˙
40 34 39 ax-mp if J = l I X l 0 ˙ = if l = J I X J 0 ˙
41 40 mpteq2i l N if J = l I X l 0 ˙ = l N if l = J I X J 0 ˙
42 2 eleq2i X B X Base A
43 42 biimpi X B X Base A
44 43 3ad2ant1 X B C V K N X Base A
45 44 3ad2ant2 R Ring X B C V K N I N J N J K X Base A
46 eqid Base R = Base R
47 1 46 matecl I N J N X Base A I X J Base R
48 12 15 45 47 syl3anc R Ring X B C V K N I N J N J K I X J Base R
49 5 29 33 15 41 48 gsummptif1n0 R Ring X B C V K N I N J N J K R l N if J = l I X l 0 ˙ = I X J
50 21 27 49 3eqtrd R Ring X B C V K N I N J N J K R l N I X l R l E J = I X J