Step |
Hyp |
Ref |
Expression |
1 |
|
marepvcl.a |
|
2 |
|
marepvcl.b |
|
3 |
|
marepvcl.v |
|
4 |
|
ma1repvcl.1 |
|
5 |
|
mulmarep1el.0 |
|
6 |
|
mulmarep1el.e |
|
7 |
|
mulmarep1gsum2.x |
|
8 |
|
simp1 |
|
9 |
8
|
adantr |
|
10 |
|
simpl2 |
|
11 |
|
simp1 |
|
12 |
11
|
3ad2ant3 |
|
13 |
12
|
adantr |
|
14 |
|
simpl32 |
|
15 |
|
simpr |
|
16 |
13 14 15
|
3jca |
|
17 |
9 10 16
|
3jca |
|
18 |
17
|
adantll |
|
19 |
1 2 3 4 5 6
|
mulmarep1el |
|
20 |
18 19
|
syl |
|
21 |
|
iftrue |
|
22 |
21
|
adantr |
|
23 |
22
|
adantr |
|
24 |
20 23
|
eqtrd |
|
25 |
24
|
mpteq2dva |
|
26 |
25
|
oveq2d |
|
27 |
|
fveq1 |
|
28 |
27
|
eqcomd |
|
29 |
28
|
3ad2ant3 |
|
30 |
29
|
3ad2ant3 |
|
31 |
30
|
adantl |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
8
|
adantl |
|
35 |
1 2
|
matrcl |
|
36 |
35
|
simpld |
|
37 |
36
|
3ad2ant1 |
|
38 |
37
|
3ad2ant2 |
|
39 |
38
|
adantl |
|
40 |
2
|
eleq2i |
|
41 |
40
|
biimpi |
|
42 |
41
|
3ad2ant1 |
|
43 |
42
|
3ad2ant2 |
|
44 |
43
|
adantl |
|
45 |
3
|
eleq2i |
|
46 |
45
|
biimpi |
|
47 |
46
|
3ad2ant2 |
|
48 |
47
|
3ad2ant2 |
|
49 |
48
|
adantl |
|
50 |
12
|
adantl |
|
51 |
1 7 32 33 34 39 44 49 50
|
mavmulfv |
|
52 |
31 51
|
eqtrd |
|
53 |
|
iftrue |
|
54 |
53
|
eqcomd |
|
55 |
54
|
adantr |
|
56 |
26 52 55
|
3eqtr2d |
|
57 |
56
|
ex |
|
58 |
8
|
adantr |
|
59 |
|
simpl2 |
|
60 |
12
|
adantr |
|
61 |
|
simpl32 |
|
62 |
|
simpr |
|
63 |
1 2 3 4 5 6
|
mulmarep1gsum1 |
|
64 |
58 59 60 61 62 63
|
syl113anc |
|
65 |
|
df-ne |
|
66 |
|
iffalse |
|
67 |
66
|
eqcomd |
|
68 |
65 67
|
sylbi |
|
69 |
68
|
adantl |
|
70 |
64 69
|
eqtrd |
|
71 |
70
|
expcom |
|
72 |
57 71
|
pm2.61ine |
|