Metamath Proof Explorer


Theorem mulmod0

Description: The product of an integer and a positive real number is 0 modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018) (Revised by AV, 5-Jul-2020)

Ref Expression
Assertion mulmod0 A M + A M mod M = 0

Proof

Step Hyp Ref Expression
1 zcn A A
2 1 adantr A M + A
3 rpcn M + M
4 3 adantl A M + M
5 rpne0 M + M 0
6 5 adantl A M + M 0
7 2 4 6 divcan4d A M + A M M = A
8 simpl A M + A
9 7 8 eqeltrd A M + A M M
10 zre A A
11 rpre M + M
12 remulcl A M A M
13 10 11 12 syl2an A M + A M
14 mod0 A M M + A M mod M = 0 A M M
15 13 14 sylancom A M + A M mod M = 0 A M M
16 9 15 mpbird A M + A M mod M = 0