Metamath Proof Explorer


Theorem mulmoddvds

Description: If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018) (Proof shortened by AV, 18-Mar-2022)

Ref Expression
Assertion mulmoddvds N A B N A A B mod N = 0

Proof

Step Hyp Ref Expression
1 simp1 N A B N
2 nnz N N
3 dvdsmultr1 N A B N A N A B
4 2 3 syl3an1 N A B N A N A B
5 dvdsmod0 N N A B A B mod N = 0
6 1 4 5 syl6an N A B N A A B mod N = 0