Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Reciprocals
mulne0
Next ⟩
mulne0i
Metamath Proof Explorer
Ascii
Unicode
Theorem
mulne0
Description:
The product of two nonzero numbers is nonzero.
(Contributed by
NM
, 30-Dec-2007)
Ref
Expression
Assertion
mulne0
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
⁢
B
≠
0
Proof
Step
Hyp
Ref
Expression
1
mulne0b
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
≠
0
∧
B
≠
0
↔
A
⁢
B
≠
0
2
1
biimpa
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
A
≠
0
∧
B
≠
0
→
A
⁢
B
≠
0
3
2
an4s
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
⁢
B
≠
0