Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Reciprocals
mulne0bbd
Metamath Proof Explorer
Description: A factor of a nonzero complex number is nonzero. Partial converse of
mulne0d and consequence of mulne0bd . (Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
mulne0bad.1
⊢ φ → A ∈ ℂ
mulne0bad.2
⊢ φ → B ∈ ℂ
mulne0bad.3
⊢ φ → A ⁢ B ≠ 0
Assertion
mulne0bbd
⊢ φ → B ≠ 0
Proof
Step
Hyp
Ref
Expression
1
mulne0bad.1
⊢ φ → A ∈ ℂ
2
mulne0bad.2
⊢ φ → B ∈ ℂ
3
mulne0bad.3
⊢ φ → A ⁢ B ≠ 0
4
1 2
mulne0bd
⊢ φ → A ≠ 0 ∧ B ≠ 0 ↔ A ⁢ B ≠ 0
5
3 4
mpbird
⊢ φ → A ≠ 0 ∧ B ≠ 0
6
5
simprd
⊢ φ → B ≠ 0