Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Multiplication
mulneg1i
Metamath Proof Explorer
Description: Product with negative is negative of product. Theorem I.12 of Apostol
p. 18. (Contributed by NM , 10-Feb-1995) (Revised by Mario Carneiro , 27-May-2016)
Ref
Expression
Hypotheses
mulm1.1
⊢ A ∈ ℂ
mulneg.2
⊢ B ∈ ℂ
Assertion
mulneg1i
⊢ − A ⁢ B = − A ⁢ B
Proof
Step
Hyp
Ref
Expression
1
mulm1.1
⊢ A ∈ ℂ
2
mulneg.2
⊢ B ∈ ℂ
3
mulneg1
⊢ A ∈ ℂ ∧ B ∈ ℂ → − A ⁢ B = − A ⁢ B
4
1 2 3
mp2an
⊢ − A ⁢ B = − A ⁢ B