Metamath Proof Explorer


Theorem mulneg2

Description: The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004)

Ref Expression
Assertion mulneg2 A B A B = A B

Proof

Step Hyp Ref Expression
1 mulneg1 B A B A = B A
2 1 ancoms A B B A = B A
3 negcl B B
4 mulcom A B A B = B A
5 3 4 sylan2 A B A B = B A
6 mulcom A B A B = B A
7 6 negeqd A B A B = B A
8 2 5 7 3eqtr4d A B A B = A B