Metamath Proof Explorer


Theorem mulnegs1d

Description: Product with negative is negative of product. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulnegs1d.1 φ A No
mulnegs1d.2 φ B No
Assertion mulnegs1d φ + s A s B = + s A s B

Proof

Step Hyp Ref Expression
1 mulnegs1d.1 φ A No
2 mulnegs1d.2 φ B No
3 1 negsidd φ A + s + s A = 0 s
4 3 oveq1d φ A + s + s A s B = 0 s s B
5 1 negscld φ + s A No
6 1 5 2 addsdird φ A + s + s A s B = A s B + s + s A s B
7 muls02 B No 0 s s B = 0 s
8 2 7 syl φ 0 s s B = 0 s
9 4 6 8 3eqtr3d φ A s B + s + s A s B = 0 s
10 1 2 mulscld φ A s B No
11 10 negsidd φ A s B + s + s A s B = 0 s
12 9 11 eqtr4d φ A s B + s + s A s B = A s B + s + s A s B
13 5 2 mulscld φ + s A s B No
14 10 negscld φ + s A s B No
15 13 14 10 addscan1d φ A s B + s + s A s B = A s B + s + s A s B + s A s B = + s A s B
16 12 15 mpbid φ + s A s B = + s A s B