Metamath Proof Explorer


Theorem mulnegs2d

Description: Product with negative is negative of product. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulnegs1d.1 φ A No
mulnegs1d.2 φ B No
Assertion mulnegs2d φ A s + s B = + s A s B

Proof

Step Hyp Ref Expression
1 mulnegs1d.1 φ A No
2 mulnegs1d.2 φ B No
3 2 1 mulnegs1d φ + s B s A = + s B s A
4 2 negscld φ + s B No
5 1 4 mulscomd φ A s + s B = + s B s A
6 1 2 mulscomd φ A s B = B s A
7 6 fveq2d φ + s A s B = + s B s A
8 3 5 7 3eqtr4d φ A s + s B = + s A s B