Metamath Proof Explorer


Theorem mulog2sumlem1

Description: Asymptotic formula for sum_ n <_ x , log ( x / n ) / n = ( 1 / 2 ) log ^ 2 ( x ) + gamma x. log x - L + O ( log x / x ) , with explicit constants. Equation 10.2.7 of Shapiro, p. 407. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses logdivsum.1 F = y + i = 1 y log i i log y 2 2
mulog2sumlem.1 φ F L
mulog2sumlem1.2 φ A +
mulog2sumlem1.3 φ e A
Assertion mulog2sumlem1 φ m = 1 A log A m m log A 2 2 + γ log A - L 2 log A A

Proof

Step Hyp Ref Expression
1 logdivsum.1 F = y + i = 1 y log i i log y 2 2
2 mulog2sumlem.1 φ F L
3 mulog2sumlem1.2 φ A +
4 mulog2sumlem1.3 φ e A
5 fzfid φ 1 A Fin
6 elfznn m 1 A m
7 6 nnrpd m 1 A m +
8 rpdivcl A + m + A m +
9 3 7 8 syl2an φ m 1 A A m +
10 9 relogcld φ m 1 A log A m
11 6 adantl φ m 1 A m
12 10 11 nndivred φ m 1 A log A m m
13 5 12 fsumrecl φ m = 1 A log A m m
14 3 relogcld φ log A
15 14 resqcld φ log A 2
16 15 rehalfcld φ log A 2 2
17 emre γ
18 remulcl γ log A γ log A
19 17 14 18 sylancr φ γ log A
20 rpsup sup + * < = +∞
21 20 a1i φ sup + * < = +∞
22 1 logdivsum F : + F dom F L A + e A F A L log A A
23 22 simp1i F : +
24 23 a1i φ F : +
25 24 feqmptd φ F = x + F x
26 25 2 eqbrtrrd φ x + F x L
27 23 ffvelrni x + F x
28 27 adantl φ x + F x
29 21 26 28 rlimrecl φ L
30 19 29 resubcld φ γ log A L
31 16 30 readdcld φ log A 2 2 + γ log A - L
32 13 31 resubcld φ m = 1 A log A m m log A 2 2 + γ log A - L
33 32 recnd φ m = 1 A log A m m log A 2 2 + γ log A - L
34 33 abscld φ m = 1 A log A m m log A 2 2 + γ log A - L
35 rerpdivcl log A m + log A m
36 14 7 35 syl2an φ m 1 A log A m
37 36 recnd φ m 1 A log A m
38 5 37 fsumcl φ m = 1 A log A m
39 14 recnd φ log A
40 readdcl log A γ log A + γ
41 14 17 40 sylancl φ log A + γ
42 41 recnd φ log A + γ
43 39 42 mulcld φ log A log A + γ
44 38 43 subcld φ m = 1 A log A m log A log A + γ
45 44 abscld φ m = 1 A log A m log A log A + γ
46 11 nnrpd φ m 1 A m +
47 46 relogcld φ m 1 A log m
48 47 11 nndivred φ m 1 A log m m
49 48 recnd φ m 1 A log m m
50 5 49 fsumcl φ m = 1 A log m m
51 16 recnd φ log A 2 2
52 29 recnd φ L
53 51 52 addcld φ log A 2 2 + L
54 50 53 subcld φ m = 1 A log m m log A 2 2 + L
55 54 abscld φ m = 1 A log m m log A 2 2 + L
56 45 55 readdcld φ m = 1 A log A m log A log A + γ + m = 1 A log m m log A 2 2 + L
57 2re 2
58 14 3 rerpdivcld φ log A A
59 remulcl 2 log A A 2 log A A
60 57 58 59 sylancr φ 2 log A A
61 relogdiv A + m + log A m = log A log m
62 3 7 61 syl2an φ m 1 A log A m = log A log m
63 62 oveq1d φ m 1 A log A m m = log A log m m
64 39 adantr φ m 1 A log A
65 47 recnd φ m 1 A log m
66 46 rpcnne0d φ m 1 A m m 0
67 divsubdir log A log m m m 0 log A log m m = log A m log m m
68 64 65 66 67 syl3anc φ m 1 A log A log m m = log A m log m m
69 63 68 eqtrd φ m 1 A log A m m = log A m log m m
70 69 sumeq2dv φ m = 1 A log A m m = m = 1 A log A m log m m
71 5 37 49 fsumsub φ m = 1 A log A m log m m = m = 1 A log A m m = 1 A log m m
72 70 71 eqtrd φ m = 1 A log A m m = m = 1 A log A m m = 1 A log m m
73 remulcl log A γ log A γ
74 14 17 73 sylancl φ log A γ
75 16 74 readdcld φ log A 2 2 + log A γ
76 75 recnd φ log A 2 2 + log A γ
77 76 51 pncand φ log A 2 2 + log A γ + log A 2 2 - log A 2 2 = log A 2 2 + log A γ
78 17 recni γ
79 78 a1i φ γ
80 39 39 79 adddid φ log A log A + γ = log A log A + log A γ
81 15 recnd φ log A 2
82 81 2halvesd φ log A 2 2 + log A 2 2 = log A 2
83 39 sqvald φ log A 2 = log A log A
84 82 83 eqtrd φ log A 2 2 + log A 2 2 = log A log A
85 84 oveq1d φ log A 2 2 + log A 2 2 + log A γ = log A log A + log A γ
86 74 recnd φ log A γ
87 51 51 86 add32d φ log A 2 2 + log A 2 2 + log A γ = log A 2 2 + log A γ + log A 2 2
88 80 85 87 3eqtr2d φ log A log A + γ = log A 2 2 + log A γ + log A 2 2
89 88 oveq1d φ log A log A + γ log A 2 2 = log A 2 2 + log A γ + log A 2 2 - log A 2 2
90 mulcom γ log A γ log A = log A γ
91 78 39 90 sylancr φ γ log A = log A γ
92 91 oveq2d φ log A 2 2 + γ log A = log A 2 2 + log A γ
93 77 89 92 3eqtr4rd φ log A 2 2 + γ log A = log A log A + γ log A 2 2
94 93 oveq1d φ log A 2 2 + γ log A - L = log A log A + γ - log A 2 2 - L
95 91 86 eqeltrd φ γ log A
96 51 95 52 addsubassd φ log A 2 2 + γ log A - L = log A 2 2 + γ log A - L
97 43 51 52 subsub4d φ log A log A + γ - log A 2 2 - L = log A log A + γ log A 2 2 + L
98 94 96 97 3eqtr3d φ log A 2 2 + γ log A - L = log A log A + γ log A 2 2 + L
99 72 98 oveq12d φ m = 1 A log A m m log A 2 2 + γ log A - L = m = 1 A log A m - m = 1 A log m m - log A log A + γ log A 2 2 + L
100 38 50 43 53 sub4d φ m = 1 A log A m - m = 1 A log m m - log A log A + γ log A 2 2 + L = m = 1 A log A m - log A log A + γ - m = 1 A log m m log A 2 2 + L
101 99 100 eqtrd φ m = 1 A log A m m log A 2 2 + γ log A - L = m = 1 A log A m - log A log A + γ - m = 1 A log m m log A 2 2 + L
102 101 fveq2d φ m = 1 A log A m m log A 2 2 + γ log A - L = m = 1 A log A m - log A log A + γ - m = 1 A log m m log A 2 2 + L
103 44 54 abs2dif2d φ m = 1 A log A m - log A log A + γ - m = 1 A log m m log A 2 2 + L m = 1 A log A m log A log A + γ + m = 1 A log m m log A 2 2 + L
104 102 103 eqbrtrd φ m = 1 A log A m m log A 2 2 + γ log A - L m = 1 A log A m log A log A + γ + m = 1 A log m m log A 2 2 + L
105 harmonicbnd4 A + m = 1 A 1 m log A + γ 1 A
106 3 105 syl φ m = 1 A 1 m log A + γ 1 A
107 11 nnrecred φ m 1 A 1 m
108 5 107 fsumrecl φ m = 1 A 1 m
109 108 41 resubcld φ m = 1 A 1 m log A + γ
110 109 recnd φ m = 1 A 1 m log A + γ
111 110 abscld φ m = 1 A 1 m log A + γ
112 3 rprecred φ 1 A
113 0red φ 0
114 1red φ 1
115 0lt1 0 < 1
116 115 a1i φ 0 < 1
117 loge log e = 1
118 epr e +
119 logleb e + A + e A log e log A
120 118 3 119 sylancr φ e A log e log A
121 4 120 mpbid φ log e log A
122 117 121 eqbrtrrid φ 1 log A
123 113 114 14 116 122 ltletrd φ 0 < log A
124 lemul2 m = 1 A 1 m log A + γ 1 A log A 0 < log A m = 1 A 1 m log A + γ 1 A log A m = 1 A 1 m log A + γ log A 1 A
125 111 112 14 123 124 syl112anc φ m = 1 A 1 m log A + γ 1 A log A m = 1 A 1 m log A + γ log A 1 A
126 106 125 mpbid φ log A m = 1 A 1 m log A + γ log A 1 A
127 46 rpcnd φ m 1 A m
128 46 rpne0d φ m 1 A m 0
129 64 127 128 divrecd φ m 1 A log A m = log A 1 m
130 129 sumeq2dv φ m = 1 A log A m = m = 1 A log A 1 m
131 107 recnd φ m 1 A 1 m
132 5 39 131 fsummulc2 φ log A m = 1 A 1 m = m = 1 A log A 1 m
133 130 132 eqtr4d φ m = 1 A log A m = log A m = 1 A 1 m
134 133 oveq1d φ m = 1 A log A m log A log A + γ = log A m = 1 A 1 m log A log A + γ
135 5 131 fsumcl φ m = 1 A 1 m
136 39 135 42 subdid φ log A m = 1 A 1 m log A + γ = log A m = 1 A 1 m log A log A + γ
137 134 136 eqtr4d φ m = 1 A log A m log A log A + γ = log A m = 1 A 1 m log A + γ
138 137 fveq2d φ m = 1 A log A m log A log A + γ = log A m = 1 A 1 m log A + γ
139 135 42 subcld φ m = 1 A 1 m log A + γ
140 39 139 absmuld φ log A m = 1 A 1 m log A + γ = log A m = 1 A 1 m log A + γ
141 113 14 123 ltled φ 0 log A
142 14 141 absidd φ log A = log A
143 142 oveq1d φ log A m = 1 A 1 m log A + γ = log A m = 1 A 1 m log A + γ
144 138 140 143 3eqtrd φ m = 1 A log A m log A log A + γ = log A m = 1 A 1 m log A + γ
145 3 rpcnd φ A
146 3 rpne0d φ A 0
147 39 145 146 divrecd φ log A A = log A 1 A
148 126 144 147 3brtr4d φ m = 1 A log A m log A log A + γ log A A
149 fveq2 i = m log i = log m
150 id i = m i = m
151 149 150 oveq12d i = m log i i = log m m
152 151 cbvsumv i = 1 y log i i = m = 1 y log m m
153 fveq2 y = A y = A
154 153 oveq2d y = A 1 y = 1 A
155 154 sumeq1d y = A m = 1 y log m m = m = 1 A log m m
156 152 155 syl5eq y = A i = 1 y log i i = m = 1 A log m m
157 fveq2 y = A log y = log A
158 157 oveq1d y = A log y 2 = log A 2
159 158 oveq1d y = A log y 2 2 = log A 2 2
160 156 159 oveq12d y = A i = 1 y log i i log y 2 2 = m = 1 A log m m log A 2 2
161 ovex m = 1 A log m m log A 2 2 V
162 160 1 161 fvmpt A + F A = m = 1 A log m m log A 2 2
163 3 162 syl φ F A = m = 1 A log m m log A 2 2
164 163 oveq1d φ F A L = m = 1 A log m m - log A 2 2 - L
165 50 51 52 subsub4d φ m = 1 A log m m - log A 2 2 - L = m = 1 A log m m log A 2 2 + L
166 164 165 eqtrd φ F A L = m = 1 A log m m log A 2 2 + L
167 166 fveq2d φ F A L = m = 1 A log m m log A 2 2 + L
168 22 simp3i F L A + e A F A L log A A
169 2 3 4 168 syl3anc φ F A L log A A
170 167 169 eqbrtrrd φ m = 1 A log m m log A 2 2 + L log A A
171 45 55 58 58 148 170 le2addd φ m = 1 A log A m log A log A + γ + m = 1 A log m m log A 2 2 + L log A A + log A A
172 58 recnd φ log A A
173 172 2timesd φ 2 log A A = log A A + log A A
174 171 173 breqtrrd φ m = 1 A log A m log A log A + γ + m = 1 A log m m log A 2 2 + L 2 log A A
175 34 56 60 104 174 letrd φ m = 1 A log A m m log A 2 2 + γ log A - L 2 log A A