Step |
Hyp |
Ref |
Expression |
1 |
|
logdivsum.1 |
|
2 |
|
mulog2sumlem.1 |
|
3 |
|
mulog2sumlem1.2 |
|
4 |
|
mulog2sumlem1.3 |
|
5 |
|
fzfid |
|
6 |
|
elfznn |
|
7 |
6
|
nnrpd |
|
8 |
|
rpdivcl |
|
9 |
3 7 8
|
syl2an |
|
10 |
9
|
relogcld |
|
11 |
6
|
adantl |
|
12 |
10 11
|
nndivred |
|
13 |
5 12
|
fsumrecl |
|
14 |
3
|
relogcld |
|
15 |
14
|
resqcld |
|
16 |
15
|
rehalfcld |
|
17 |
|
emre |
|
18 |
|
remulcl |
|
19 |
17 14 18
|
sylancr |
|
20 |
|
rpsup |
|
21 |
20
|
a1i |
|
22 |
1
|
logdivsum |
|
23 |
22
|
simp1i |
|
24 |
23
|
a1i |
|
25 |
24
|
feqmptd |
|
26 |
25 2
|
eqbrtrrd |
|
27 |
23
|
ffvelrni |
|
28 |
27
|
adantl |
|
29 |
21 26 28
|
rlimrecl |
|
30 |
19 29
|
resubcld |
|
31 |
16 30
|
readdcld |
|
32 |
13 31
|
resubcld |
|
33 |
32
|
recnd |
|
34 |
33
|
abscld |
|
35 |
|
rerpdivcl |
|
36 |
14 7 35
|
syl2an |
|
37 |
36
|
recnd |
|
38 |
5 37
|
fsumcl |
|
39 |
14
|
recnd |
|
40 |
|
readdcl |
|
41 |
14 17 40
|
sylancl |
|
42 |
41
|
recnd |
|
43 |
39 42
|
mulcld |
|
44 |
38 43
|
subcld |
|
45 |
44
|
abscld |
|
46 |
11
|
nnrpd |
|
47 |
46
|
relogcld |
|
48 |
47 11
|
nndivred |
|
49 |
48
|
recnd |
|
50 |
5 49
|
fsumcl |
|
51 |
16
|
recnd |
|
52 |
29
|
recnd |
|
53 |
51 52
|
addcld |
|
54 |
50 53
|
subcld |
|
55 |
54
|
abscld |
|
56 |
45 55
|
readdcld |
|
57 |
|
2re |
|
58 |
14 3
|
rerpdivcld |
|
59 |
|
remulcl |
|
60 |
57 58 59
|
sylancr |
|
61 |
|
relogdiv |
|
62 |
3 7 61
|
syl2an |
|
63 |
62
|
oveq1d |
|
64 |
39
|
adantr |
|
65 |
47
|
recnd |
|
66 |
46
|
rpcnne0d |
|
67 |
|
divsubdir |
|
68 |
64 65 66 67
|
syl3anc |
|
69 |
63 68
|
eqtrd |
|
70 |
69
|
sumeq2dv |
|
71 |
5 37 49
|
fsumsub |
|
72 |
70 71
|
eqtrd |
|
73 |
|
remulcl |
|
74 |
14 17 73
|
sylancl |
|
75 |
16 74
|
readdcld |
|
76 |
75
|
recnd |
|
77 |
76 51
|
pncand |
|
78 |
17
|
recni |
|
79 |
78
|
a1i |
|
80 |
39 39 79
|
adddid |
|
81 |
15
|
recnd |
|
82 |
81
|
2halvesd |
|
83 |
39
|
sqvald |
|
84 |
82 83
|
eqtrd |
|
85 |
84
|
oveq1d |
|
86 |
74
|
recnd |
|
87 |
51 51 86
|
add32d |
|
88 |
80 85 87
|
3eqtr2d |
|
89 |
88
|
oveq1d |
|
90 |
|
mulcom |
|
91 |
78 39 90
|
sylancr |
|
92 |
91
|
oveq2d |
|
93 |
77 89 92
|
3eqtr4rd |
|
94 |
93
|
oveq1d |
|
95 |
91 86
|
eqeltrd |
|
96 |
51 95 52
|
addsubassd |
|
97 |
43 51 52
|
subsub4d |
|
98 |
94 96 97
|
3eqtr3d |
|
99 |
72 98
|
oveq12d |
|
100 |
38 50 43 53
|
sub4d |
|
101 |
99 100
|
eqtrd |
|
102 |
101
|
fveq2d |
|
103 |
44 54
|
abs2dif2d |
|
104 |
102 103
|
eqbrtrd |
|
105 |
|
harmonicbnd4 |
|
106 |
3 105
|
syl |
|
107 |
11
|
nnrecred |
|
108 |
5 107
|
fsumrecl |
|
109 |
108 41
|
resubcld |
|
110 |
109
|
recnd |
|
111 |
110
|
abscld |
|
112 |
3
|
rprecred |
|
113 |
|
0red |
|
114 |
|
1red |
|
115 |
|
0lt1 |
|
116 |
115
|
a1i |
|
117 |
|
loge |
|
118 |
|
epr |
|
119 |
|
logleb |
|
120 |
118 3 119
|
sylancr |
|
121 |
4 120
|
mpbid |
|
122 |
117 121
|
eqbrtrrid |
|
123 |
113 114 14 116 122
|
ltletrd |
|
124 |
|
lemul2 |
|
125 |
111 112 14 123 124
|
syl112anc |
|
126 |
106 125
|
mpbid |
|
127 |
46
|
rpcnd |
|
128 |
46
|
rpne0d |
|
129 |
64 127 128
|
divrecd |
|
130 |
129
|
sumeq2dv |
|
131 |
107
|
recnd |
|
132 |
5 39 131
|
fsummulc2 |
|
133 |
130 132
|
eqtr4d |
|
134 |
133
|
oveq1d |
|
135 |
5 131
|
fsumcl |
|
136 |
39 135 42
|
subdid |
|
137 |
134 136
|
eqtr4d |
|
138 |
137
|
fveq2d |
|
139 |
135 42
|
subcld |
|
140 |
39 139
|
absmuld |
|
141 |
113 14 123
|
ltled |
|
142 |
14 141
|
absidd |
|
143 |
142
|
oveq1d |
|
144 |
138 140 143
|
3eqtrd |
|
145 |
3
|
rpcnd |
|
146 |
3
|
rpne0d |
|
147 |
39 145 146
|
divrecd |
|
148 |
126 144 147
|
3brtr4d |
|
149 |
|
fveq2 |
|
150 |
|
id |
|
151 |
149 150
|
oveq12d |
|
152 |
151
|
cbvsumv |
|
153 |
|
fveq2 |
|
154 |
153
|
oveq2d |
|
155 |
154
|
sumeq1d |
|
156 |
152 155
|
syl5eq |
|
157 |
|
fveq2 |
|
158 |
157
|
oveq1d |
|
159 |
158
|
oveq1d |
|
160 |
156 159
|
oveq12d |
|
161 |
|
ovex |
|
162 |
160 1 161
|
fvmpt |
|
163 |
3 162
|
syl |
|
164 |
163
|
oveq1d |
|
165 |
50 51 52
|
subsub4d |
|
166 |
164 165
|
eqtrd |
|
167 |
166
|
fveq2d |
|
168 |
22
|
simp3i |
|
169 |
2 3 4 168
|
syl3anc |
|
170 |
167 169
|
eqbrtrrd |
|
171 |
45 55 58 58 148 170
|
le2addd |
|
172 |
58
|
recnd |
|
173 |
172
|
2timesd |
|
174 |
171 173
|
breqtrrd |
|
175 |
34 56 60 104 174
|
letrd |
|