Step |
Hyp |
Ref |
Expression |
1 |
|
logdivsum.1 |
|
2 |
|
mulog2sumlem.1 |
|
3 |
|
2cn |
|
4 |
3
|
a1i |
|
5 |
|
fzfid |
|
6 |
|
elfznn |
|
7 |
6
|
adantl |
|
8 |
|
mucl |
|
9 |
7 8
|
syl |
|
10 |
9
|
zred |
|
11 |
10 7
|
nndivred |
|
12 |
11
|
recnd |
|
13 |
|
simpr |
|
14 |
6
|
nnrpd |
|
15 |
|
rpdivcl |
|
16 |
13 14 15
|
syl2an |
|
17 |
16
|
relogcld |
|
18 |
17
|
recnd |
|
19 |
18
|
sqcld |
|
20 |
19
|
halfcld |
|
21 |
12 20
|
mulcld |
|
22 |
5 21
|
fsumcl |
|
23 |
|
relogcl |
|
24 |
23
|
adantl |
|
25 |
24
|
recnd |
|
26 |
4 22 25
|
subdid |
|
27 |
5 4 21
|
fsummulc2 |
|
28 |
3
|
a1i |
|
29 |
28 12 20
|
mul12d |
|
30 |
|
2ne0 |
|
31 |
30
|
a1i |
|
32 |
19 28 31
|
divcan2d |
|
33 |
32
|
oveq2d |
|
34 |
29 33
|
eqtrd |
|
35 |
34
|
sumeq2dv |
|
36 |
27 35
|
eqtrd |
|
37 |
36
|
oveq1d |
|
38 |
26 37
|
eqtrd |
|
39 |
38
|
mpteq2dva |
|
40 |
22 25
|
subcld |
|
41 |
|
rpssre |
|
42 |
|
o1const |
|
43 |
41 3 42
|
mp2an |
|
44 |
43
|
a1i |
|
45 |
|
emre |
|
46 |
45
|
recni |
|
47 |
|
mulcl |
|
48 |
46 18 47
|
sylancr |
|
49 |
|
rlimcl |
|
50 |
2 49
|
syl |
|
51 |
50
|
ad2antrr |
|
52 |
48 51
|
subcld |
|
53 |
20 52
|
addcld |
|
54 |
12 53
|
mulcld |
|
55 |
5 54
|
fsumcl |
|
56 |
12 52
|
mulcld |
|
57 |
5 56
|
fsumcl |
|
58 |
55 25 57
|
sub32d |
|
59 |
5 54 56
|
fsumsub |
|
60 |
12 53 52
|
subdid |
|
61 |
20 52
|
pncand |
|
62 |
61
|
oveq2d |
|
63 |
60 62
|
eqtr3d |
|
64 |
63
|
sumeq2dv |
|
65 |
59 64
|
eqtr3d |
|
66 |
65
|
oveq1d |
|
67 |
58 66
|
eqtrd |
|
68 |
67
|
mpteq2dva |
|
69 |
55 25
|
subcld |
|
70 |
|
eqid |
|
71 |
|
eqid |
|
72 |
1 2 70 71
|
mulog2sumlem2 |
|
73 |
46
|
a1i |
|
74 |
12 18
|
mulcld |
|
75 |
5 73 74
|
fsummulc2 |
|
76 |
50
|
adantr |
|
77 |
5 76 12
|
fsummulc1 |
|
78 |
75 77
|
oveq12d |
|
79 |
|
mulcl |
|
80 |
46 74 79
|
sylancr |
|
81 |
12 51
|
mulcld |
|
82 |
5 80 81
|
fsumsub |
|
83 |
46
|
a1i |
|
84 |
83 12 18
|
mul12d |
|
85 |
84
|
oveq1d |
|
86 |
12 48 51
|
subdid |
|
87 |
85 86
|
eqtr4d |
|
88 |
87
|
sumeq2dv |
|
89 |
78 82 88
|
3eqtr2d |
|
90 |
89
|
mpteq2dva |
|
91 |
5 74
|
fsumcl |
|
92 |
|
mulcl |
|
93 |
46 91 92
|
sylancr |
|
94 |
5 12
|
fsumcl |
|
95 |
94 76
|
mulcld |
|
96 |
46
|
a1i |
|
97 |
|
o1const |
|
98 |
41 96 97
|
sylancr |
|
99 |
|
mulogsum |
|
100 |
99
|
a1i |
|
101 |
73 91 98 100
|
o1mul2 |
|
102 |
|
mudivsum |
|
103 |
102
|
a1i |
|
104 |
|
o1const |
|
105 |
41 50 104
|
sylancr |
|
106 |
94 76 103 105
|
o1mul2 |
|
107 |
93 95 101 106
|
o1sub2 |
|
108 |
90 107
|
eqeltrrd |
|
109 |
69 57 72 108
|
o1sub2 |
|
110 |
68 109
|
eqeltrrd |
|
111 |
4 40 44 110
|
o1mul2 |
|
112 |
39 111
|
eqeltrrd |
|