Step |
Hyp |
Ref |
Expression |
1 |
|
rpssre |
|
2 |
|
ax-1cn |
|
3 |
|
o1const |
|
4 |
1 2 3
|
mp2an |
|
5 |
|
1cnd |
|
6 |
|
fzfid |
|
7 |
|
elfznn |
|
8 |
7
|
adantl |
|
9 |
|
mucl |
|
10 |
8 9
|
syl |
|
11 |
10
|
zred |
|
12 |
11 8
|
nndivred |
|
13 |
7
|
nnrpd |
|
14 |
|
rpdivcl |
|
15 |
13 14
|
sylan2 |
|
16 |
15
|
relogcld |
|
17 |
12 16
|
remulcld |
|
18 |
17
|
recnd |
|
19 |
6 18
|
fsumcl |
|
20 |
19
|
adantl |
|
21 |
|
mulogsumlem |
|
22 |
|
sumex |
|
23 |
22
|
a1i |
|
24 |
21
|
a1i |
|
25 |
23 24
|
o1mptrcl |
|
26 |
5 20
|
subcld |
|
27 |
|
1red |
|
28 |
|
fz1ssnn |
|
29 |
28
|
a1i |
|
30 |
29
|
sselda |
|
31 |
30 9
|
syl |
|
32 |
31
|
zred |
|
33 |
32 30
|
nndivred |
|
34 |
33
|
recnd |
|
35 |
|
fzfid |
|
36 |
|
elfznn |
|
37 |
36
|
adantl |
|
38 |
37
|
nnrpd |
|
39 |
38
|
rpcnne0d |
|
40 |
|
reccl |
|
41 |
39 40
|
syl |
|
42 |
35 41
|
fsumcl |
|
43 |
|
simpl |
|
44 |
43 13 14
|
syl2an |
|
45 |
44
|
relogcld |
|
46 |
45
|
recnd |
|
47 |
34 42 46
|
subdid |
|
48 |
47
|
sumeq2dv |
|
49 |
|
fzfid |
|
50 |
34 42
|
mulcld |
|
51 |
18
|
adantlr |
|
52 |
49 50 51
|
fsumsub |
|
53 |
|
oveq2 |
|
54 |
53
|
oveq2d |
|
55 |
|
rpre |
|
56 |
55
|
adantr |
|
57 |
|
ssrab2 |
|
58 |
|
simprr |
|
59 |
57 58
|
sselid |
|
60 |
59 9
|
syl |
|
61 |
60
|
zcnd |
|
62 |
|
elfznn |
|
63 |
62
|
adantl |
|
64 |
63
|
nnrecred |
|
65 |
64
|
recnd |
|
66 |
65
|
adantrr |
|
67 |
61 66
|
mulcld |
|
68 |
54 56 67
|
dvdsflsumcom |
|
69 |
|
oveq2 |
|
70 |
|
1div1e1 |
|
71 |
69 70
|
eqtrdi |
|
72 |
|
flge1nn |
|
73 |
55 72
|
sylan |
|
74 |
|
nnuz |
|
75 |
73 74
|
eleqtrdi |
|
76 |
|
eluzfz1 |
|
77 |
75 76
|
syl |
|
78 |
71 49 29 77 65
|
musumsum |
|
79 |
31
|
zcnd |
|
80 |
79
|
adantr |
|
81 |
30
|
adantr |
|
82 |
81
|
nnrpd |
|
83 |
82
|
rpcnne0d |
|
84 |
|
divdiv1 |
|
85 |
80 83 39 84
|
syl3anc |
|
86 |
34
|
adantr |
|
87 |
37
|
nncnd |
|
88 |
37
|
nnne0d |
|
89 |
86 87 88
|
divrecd |
|
90 |
|
nnmulcl |
|
91 |
30 36 90
|
syl2an |
|
92 |
91
|
nncnd |
|
93 |
91
|
nnne0d |
|
94 |
80 92 93
|
divrecd |
|
95 |
85 89 94
|
3eqtr3rd |
|
96 |
95
|
sumeq2dv |
|
97 |
35 34 41
|
fsummulc2 |
|
98 |
96 97
|
eqtr4d |
|
99 |
98
|
sumeq2dv |
|
100 |
68 78 99
|
3eqtr3rd |
|
101 |
100
|
oveq1d |
|
102 |
48 52 101
|
3eqtrd |
|
103 |
102
|
adantl |
|
104 |
25 26 27 103
|
o1eq |
|
105 |
21 104
|
mpbii |
|
106 |
5 20 105
|
o1dif |
|
107 |
4 106
|
mpbii |
|
108 |
107
|
mptru |
|