Metamath Proof Explorer


Theorem mulogsum

Description: Asymptotic formula for sum_ n <_ x , ( mmu ( n ) / n ) log ( x / n ) = O(1) . Equation 10.2.6 of Shapiro, p. 406. (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Assertion mulogsum x + n = 1 x μ n n log x n 𝑂1

Proof

Step Hyp Ref Expression
1 rpssre +
2 ax-1cn 1
3 o1const + 1 x + 1 𝑂1
4 1 2 3 mp2an x + 1 𝑂1
5 1cnd x + 1
6 fzfid x + 1 x Fin
7 elfznn n 1 x n
8 7 adantl x + n 1 x n
9 mucl n μ n
10 8 9 syl x + n 1 x μ n
11 10 zred x + n 1 x μ n
12 11 8 nndivred x + n 1 x μ n n
13 7 nnrpd n 1 x n +
14 rpdivcl x + n + x n +
15 13 14 sylan2 x + n 1 x x n +
16 15 relogcld x + n 1 x log x n
17 12 16 remulcld x + n 1 x μ n n log x n
18 17 recnd x + n 1 x μ n n log x n
19 6 18 fsumcl x + n = 1 x μ n n log x n
20 19 adantl x + n = 1 x μ n n log x n
21 mulogsumlem x + n = 1 x μ n n m = 1 x n 1 m log x n 𝑂1
22 sumex n = 1 x μ n n m = 1 x n 1 m log x n V
23 22 a1i x + n = 1 x μ n n m = 1 x n 1 m log x n V
24 21 a1i x + n = 1 x μ n n m = 1 x n 1 m log x n 𝑂1
25 23 24 o1mptrcl x + n = 1 x μ n n m = 1 x n 1 m log x n
26 5 20 subcld x + 1 n = 1 x μ n n log x n
27 1red 1
28 fz1ssnn 1 x
29 28 a1i x + 1 x 1 x
30 29 sselda x + 1 x n 1 x n
31 30 9 syl x + 1 x n 1 x μ n
32 31 zred x + 1 x n 1 x μ n
33 32 30 nndivred x + 1 x n 1 x μ n n
34 33 recnd x + 1 x n 1 x μ n n
35 fzfid x + 1 x n 1 x 1 x n Fin
36 elfznn m 1 x n m
37 36 adantl x + 1 x n 1 x m 1 x n m
38 37 nnrpd x + 1 x n 1 x m 1 x n m +
39 38 rpcnne0d x + 1 x n 1 x m 1 x n m m 0
40 reccl m m 0 1 m
41 39 40 syl x + 1 x n 1 x m 1 x n 1 m
42 35 41 fsumcl x + 1 x n 1 x m = 1 x n 1 m
43 simpl x + 1 x x +
44 43 13 14 syl2an x + 1 x n 1 x x n +
45 44 relogcld x + 1 x n 1 x log x n
46 45 recnd x + 1 x n 1 x log x n
47 34 42 46 subdid x + 1 x n 1 x μ n n m = 1 x n 1 m log x n = μ n n m = 1 x n 1 m μ n n log x n
48 47 sumeq2dv x + 1 x n = 1 x μ n n m = 1 x n 1 m log x n = n = 1 x μ n n m = 1 x n 1 m μ n n log x n
49 fzfid x + 1 x 1 x Fin
50 34 42 mulcld x + 1 x n 1 x μ n n m = 1 x n 1 m
51 18 adantlr x + 1 x n 1 x μ n n log x n
52 49 50 51 fsumsub x + 1 x n = 1 x μ n n m = 1 x n 1 m μ n n log x n = n = 1 x μ n n m = 1 x n 1 m n = 1 x μ n n log x n
53 oveq2 k = n m 1 k = 1 n m
54 53 oveq2d k = n m μ n 1 k = μ n 1 n m
55 rpre x + x
56 55 adantr x + 1 x x
57 ssrab2 y | y k
58 simprr x + 1 x k 1 x n y | y k n y | y k
59 57 58 sselid x + 1 x k 1 x n y | y k n
60 59 9 syl x + 1 x k 1 x n y | y k μ n
61 60 zcnd x + 1 x k 1 x n y | y k μ n
62 elfznn k 1 x k
63 62 adantl x + 1 x k 1 x k
64 63 nnrecred x + 1 x k 1 x 1 k
65 64 recnd x + 1 x k 1 x 1 k
66 65 adantrr x + 1 x k 1 x n y | y k 1 k
67 61 66 mulcld x + 1 x k 1 x n y | y k μ n 1 k
68 54 56 67 dvdsflsumcom x + 1 x k = 1 x n y | y k μ n 1 k = n = 1 x m = 1 x n μ n 1 n m
69 oveq2 k = 1 1 k = 1 1
70 1div1e1 1 1 = 1
71 69 70 eqtrdi k = 1 1 k = 1
72 flge1nn x 1 x x
73 55 72 sylan x + 1 x x
74 nnuz = 1
75 73 74 eleqtrdi x + 1 x x 1
76 eluzfz1 x 1 1 1 x
77 75 76 syl x + 1 x 1 1 x
78 71 49 29 77 65 musumsum x + 1 x k = 1 x n y | y k μ n 1 k = 1
79 31 zcnd x + 1 x n 1 x μ n
80 79 adantr x + 1 x n 1 x m 1 x n μ n
81 30 adantr x + 1 x n 1 x m 1 x n n
82 81 nnrpd x + 1 x n 1 x m 1 x n n +
83 82 rpcnne0d x + 1 x n 1 x m 1 x n n n 0
84 divdiv1 μ n n n 0 m m 0 μ n n m = μ n n m
85 80 83 39 84 syl3anc x + 1 x n 1 x m 1 x n μ n n m = μ n n m
86 34 adantr x + 1 x n 1 x m 1 x n μ n n
87 37 nncnd x + 1 x n 1 x m 1 x n m
88 37 nnne0d x + 1 x n 1 x m 1 x n m 0
89 86 87 88 divrecd x + 1 x n 1 x m 1 x n μ n n m = μ n n 1 m
90 nnmulcl n m n m
91 30 36 90 syl2an x + 1 x n 1 x m 1 x n n m
92 91 nncnd x + 1 x n 1 x m 1 x n n m
93 91 nnne0d x + 1 x n 1 x m 1 x n n m 0
94 80 92 93 divrecd x + 1 x n 1 x m 1 x n μ n n m = μ n 1 n m
95 85 89 94 3eqtr3rd x + 1 x n 1 x m 1 x n μ n 1 n m = μ n n 1 m
96 95 sumeq2dv x + 1 x n 1 x m = 1 x n μ n 1 n m = m = 1 x n μ n n 1 m
97 35 34 41 fsummulc2 x + 1 x n 1 x μ n n m = 1 x n 1 m = m = 1 x n μ n n 1 m
98 96 97 eqtr4d x + 1 x n 1 x m = 1 x n μ n 1 n m = μ n n m = 1 x n 1 m
99 98 sumeq2dv x + 1 x n = 1 x m = 1 x n μ n 1 n m = n = 1 x μ n n m = 1 x n 1 m
100 68 78 99 3eqtr3rd x + 1 x n = 1 x μ n n m = 1 x n 1 m = 1
101 100 oveq1d x + 1 x n = 1 x μ n n m = 1 x n 1 m n = 1 x μ n n log x n = 1 n = 1 x μ n n log x n
102 48 52 101 3eqtrd x + 1 x n = 1 x μ n n m = 1 x n 1 m log x n = 1 n = 1 x μ n n log x n
103 102 adantl x + 1 x n = 1 x μ n n m = 1 x n 1 m log x n = 1 n = 1 x μ n n log x n
104 25 26 27 103 o1eq x + n = 1 x μ n n m = 1 x n 1 m log x n 𝑂1 x + 1 n = 1 x μ n n log x n 𝑂1
105 21 104 mpbii x + 1 n = 1 x μ n n log x n 𝑂1
106 5 20 105 o1dif x + 1 𝑂1 x + n = 1 x μ n n log x n 𝑂1
107 4 106 mpbii x + n = 1 x μ n n log x n 𝑂1
108 107 mptru x + n = 1 x μ n n log x n 𝑂1