Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|
2 |
|
elfznn |
|
3 |
2
|
adantl |
|
4 |
|
mucl |
|
5 |
3 4
|
syl |
|
6 |
5
|
zred |
|
7 |
6 3
|
nndivred |
|
8 |
7
|
recnd |
|
9 |
1 8
|
fsumcl |
|
10 |
9
|
adantl |
|
11 |
|
emre |
|
12 |
11
|
recni |
|
13 |
12
|
a1i |
|
14 |
|
mudivsum |
|
15 |
14
|
a1i |
|
16 |
|
rpssre |
|
17 |
|
o1const |
|
18 |
16 12 17
|
mp2an |
|
19 |
18
|
a1i |
|
20 |
10 13 15 19
|
o1mul2 |
|
21 |
|
fzfid |
|
22 |
|
elfznn |
|
23 |
22
|
adantl |
|
24 |
23
|
nnrecred |
|
25 |
21 24
|
fsumrecl |
|
26 |
2
|
nnrpd |
|
27 |
|
rpdivcl |
|
28 |
26 27
|
sylan2 |
|
29 |
28
|
relogcld |
|
30 |
25 29
|
resubcld |
|
31 |
7 30
|
remulcld |
|
32 |
1 31
|
fsumrecl |
|
33 |
32
|
recnd |
|
34 |
33
|
adantl |
|
35 |
|
mulcl |
|
36 |
9 12 35
|
sylancl |
|
37 |
36
|
adantl |
|
38 |
|
nnrecre |
|
39 |
38
|
recnd |
|
40 |
23 39
|
syl |
|
41 |
21 40
|
fsumcl |
|
42 |
29
|
recnd |
|
43 |
41 42
|
subcld |
|
44 |
8 43
|
mulcld |
|
45 |
|
mulcl |
|
46 |
8 12 45
|
sylancl |
|
47 |
1 44 46
|
fsumsub |
|
48 |
12
|
a1i |
|
49 |
41 42 48
|
subsub4d |
|
50 |
49
|
oveq2d |
|
51 |
8 43 48
|
subdid |
|
52 |
50 51
|
eqtr3d |
|
53 |
52
|
sumeq2dv |
|
54 |
12
|
a1i |
|
55 |
1 54 8
|
fsummulc1 |
|
56 |
55
|
oveq2d |
|
57 |
47 53 56
|
3eqtr4d |
|
58 |
57
|
mpteq2ia |
|
59 |
16
|
a1i |
|
60 |
42 48
|
addcld |
|
61 |
41 60
|
subcld |
|
62 |
8 61
|
mulcld |
|
63 |
1 62
|
fsumcl |
|
64 |
63
|
adantl |
|
65 |
|
1red |
|
66 |
63
|
abscld |
|
67 |
62
|
abscld |
|
68 |
1 67
|
fsumrecl |
|
69 |
|
1red |
|
70 |
1 62
|
fsumabs |
|
71 |
|
rprege0 |
|
72 |
|
flge0nn0 |
|
73 |
71 72
|
syl |
|
74 |
73
|
nn0red |
|
75 |
|
rerpdivcl |
|
76 |
74 75
|
mpancom |
|
77 |
|
rpreccl |
|
78 |
77
|
adantr |
|
79 |
78
|
rpred |
|
80 |
8
|
abscld |
|
81 |
3
|
nnrecred |
|
82 |
61
|
abscld |
|
83 |
|
id |
|
84 |
|
rpdivcl |
|
85 |
26 83 84
|
syl2anr |
|
86 |
85
|
rpred |
|
87 |
8
|
absge0d |
|
88 |
61
|
absge0d |
|
89 |
6
|
recnd |
|
90 |
3
|
nncnd |
|
91 |
3
|
nnne0d |
|
92 |
89 90 91
|
absdivd |
|
93 |
3
|
nnrpd |
|
94 |
|
rprege0 |
|
95 |
93 94
|
syl |
|
96 |
|
absid |
|
97 |
95 96
|
syl |
|
98 |
97
|
oveq2d |
|
99 |
92 98
|
eqtrd |
|
100 |
89
|
abscld |
|
101 |
|
1red |
|
102 |
|
mule1 |
|
103 |
3 102
|
syl |
|
104 |
100 101 93 103
|
lediv1dd |
|
105 |
99 104
|
eqbrtrd |
|
106 |
|
harmonicbnd4 |
|
107 |
28 106
|
syl |
|
108 |
|
rpcnne0 |
|
109 |
108
|
adantr |
|
110 |
|
rpcnne0 |
|
111 |
93 110
|
syl |
|
112 |
|
recdiv |
|
113 |
109 111 112
|
syl2anc |
|
114 |
107 113
|
breqtrd |
|
115 |
80 81 82 86 87 88 105 114
|
lemul12ad |
|
116 |
8 61
|
absmuld |
|
117 |
|
1cnd |
|
118 |
|
dmdcan |
|
119 |
111 109 117 118
|
syl3anc |
|
120 |
85
|
rpcnd |
|
121 |
81
|
recnd |
|
122 |
120 121
|
mulcomd |
|
123 |
119 122
|
eqtr3d |
|
124 |
115 116 123
|
3brtr4d |
|
125 |
1 67 79 124
|
fsumle |
|
126 |
|
hashfz1 |
|
127 |
73 126
|
syl |
|
128 |
127
|
oveq1d |
|
129 |
77
|
rpcnd |
|
130 |
|
fsumconst |
|
131 |
1 129 130
|
syl2anc |
|
132 |
73
|
nn0cnd |
|
133 |
|
rpcn |
|
134 |
|
rpne0 |
|
135 |
132 133 134
|
divrecd |
|
136 |
128 131 135
|
3eqtr4d |
|
137 |
125 136
|
breqtrd |
|
138 |
|
rpre |
|
139 |
|
flle |
|
140 |
138 139
|
syl |
|
141 |
133
|
mulid1d |
|
142 |
140 141
|
breqtrrd |
|
143 |
|
reflcl |
|
144 |
138 143
|
syl |
|
145 |
|
rpregt0 |
|
146 |
|
ledivmul |
|
147 |
144 69 145 146
|
syl3anc |
|
148 |
142 147
|
mpbird |
|
149 |
68 76 69 137 148
|
letrd |
|
150 |
66 68 69 70 149
|
letrd |
|
151 |
150
|
ad2antrl |
|
152 |
59 64 65 65 151
|
elo1d |
|
153 |
58 152
|
eqeltrrid |
|
154 |
34 37 153
|
o1dif |
|
155 |
20 154
|
mpbird |
|
156 |
155
|
mptru |
|