Metamath Proof Explorer


Theorem mulogsumlem

Description: Lemma for mulogsum . (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Assertion mulogsumlem x + n = 1 x μ n n m = 1 x n 1 m log x n 𝑂1

Proof

Step Hyp Ref Expression
1 fzfid x + 1 x Fin
2 elfznn n 1 x n
3 2 adantl x + n 1 x n
4 mucl n μ n
5 3 4 syl x + n 1 x μ n
6 5 zred x + n 1 x μ n
7 6 3 nndivred x + n 1 x μ n n
8 7 recnd x + n 1 x μ n n
9 1 8 fsumcl x + n = 1 x μ n n
10 9 adantl x + n = 1 x μ n n
11 emre γ
12 11 recni γ
13 12 a1i x + γ
14 mudivsum x + n = 1 x μ n n 𝑂1
15 14 a1i x + n = 1 x μ n n 𝑂1
16 rpssre +
17 o1const + γ x + γ 𝑂1
18 16 12 17 mp2an x + γ 𝑂1
19 18 a1i x + γ 𝑂1
20 10 13 15 19 o1mul2 x + n = 1 x μ n n γ 𝑂1
21 fzfid x + n 1 x 1 x n Fin
22 elfznn m 1 x n m
23 22 adantl x + n 1 x m 1 x n m
24 23 nnrecred x + n 1 x m 1 x n 1 m
25 21 24 fsumrecl x + n 1 x m = 1 x n 1 m
26 2 nnrpd n 1 x n +
27 rpdivcl x + n + x n +
28 26 27 sylan2 x + n 1 x x n +
29 28 relogcld x + n 1 x log x n
30 25 29 resubcld x + n 1 x m = 1 x n 1 m log x n
31 7 30 remulcld x + n 1 x μ n n m = 1 x n 1 m log x n
32 1 31 fsumrecl x + n = 1 x μ n n m = 1 x n 1 m log x n
33 32 recnd x + n = 1 x μ n n m = 1 x n 1 m log x n
34 33 adantl x + n = 1 x μ n n m = 1 x n 1 m log x n
35 mulcl n = 1 x μ n n γ n = 1 x μ n n γ
36 9 12 35 sylancl x + n = 1 x μ n n γ
37 36 adantl x + n = 1 x μ n n γ
38 nnrecre m 1 m
39 38 recnd m 1 m
40 23 39 syl x + n 1 x m 1 x n 1 m
41 21 40 fsumcl x + n 1 x m = 1 x n 1 m
42 29 recnd x + n 1 x log x n
43 41 42 subcld x + n 1 x m = 1 x n 1 m log x n
44 8 43 mulcld x + n 1 x μ n n m = 1 x n 1 m log x n
45 mulcl μ n n γ μ n n γ
46 8 12 45 sylancl x + n 1 x μ n n γ
47 1 44 46 fsumsub x + n = 1 x μ n n m = 1 x n 1 m log x n μ n n γ = n = 1 x μ n n m = 1 x n 1 m log x n n = 1 x μ n n γ
48 12 a1i x + n 1 x γ
49 41 42 48 subsub4d x + n 1 x m = 1 x n 1 m - log x n - γ = m = 1 x n 1 m log x n + γ
50 49 oveq2d x + n 1 x μ n n m = 1 x n 1 m - log x n - γ = μ n n m = 1 x n 1 m log x n + γ
51 8 43 48 subdid x + n 1 x μ n n m = 1 x n 1 m - log x n - γ = μ n n m = 1 x n 1 m log x n μ n n γ
52 50 51 eqtr3d x + n 1 x μ n n m = 1 x n 1 m log x n + γ = μ n n m = 1 x n 1 m log x n μ n n γ
53 52 sumeq2dv x + n = 1 x μ n n m = 1 x n 1 m log x n + γ = n = 1 x μ n n m = 1 x n 1 m log x n μ n n γ
54 12 a1i x + γ
55 1 54 8 fsummulc1 x + n = 1 x μ n n γ = n = 1 x μ n n γ
56 55 oveq2d x + n = 1 x μ n n m = 1 x n 1 m log x n n = 1 x μ n n γ = n = 1 x μ n n m = 1 x n 1 m log x n n = 1 x μ n n γ
57 47 53 56 3eqtr4d x + n = 1 x μ n n m = 1 x n 1 m log x n + γ = n = 1 x μ n n m = 1 x n 1 m log x n n = 1 x μ n n γ
58 57 mpteq2ia x + n = 1 x μ n n m = 1 x n 1 m log x n + γ = x + n = 1 x μ n n m = 1 x n 1 m log x n n = 1 x μ n n γ
59 16 a1i +
60 42 48 addcld x + n 1 x log x n + γ
61 41 60 subcld x + n 1 x m = 1 x n 1 m log x n + γ
62 8 61 mulcld x + n 1 x μ n n m = 1 x n 1 m log x n + γ
63 1 62 fsumcl x + n = 1 x μ n n m = 1 x n 1 m log x n + γ
64 63 adantl x + n = 1 x μ n n m = 1 x n 1 m log x n + γ
65 1red 1
66 63 abscld x + n = 1 x μ n n m = 1 x n 1 m log x n + γ
67 62 abscld x + n 1 x μ n n m = 1 x n 1 m log x n + γ
68 1 67 fsumrecl x + n = 1 x μ n n m = 1 x n 1 m log x n + γ
69 1red x + 1
70 1 62 fsumabs x + n = 1 x μ n n m = 1 x n 1 m log x n + γ n = 1 x μ n n m = 1 x n 1 m log x n + γ
71 rprege0 x + x 0 x
72 flge0nn0 x 0 x x 0
73 71 72 syl x + x 0
74 73 nn0red x + x
75 rerpdivcl x x + x x
76 74 75 mpancom x + x x
77 rpreccl x + 1 x +
78 77 adantr x + n 1 x 1 x +
79 78 rpred x + n 1 x 1 x
80 8 abscld x + n 1 x μ n n
81 3 nnrecred x + n 1 x 1 n
82 61 abscld x + n 1 x m = 1 x n 1 m log x n + γ
83 id x + x +
84 rpdivcl n + x + n x +
85 26 83 84 syl2anr x + n 1 x n x +
86 85 rpred x + n 1 x n x
87 8 absge0d x + n 1 x 0 μ n n
88 61 absge0d x + n 1 x 0 m = 1 x n 1 m log x n + γ
89 6 recnd x + n 1 x μ n
90 3 nncnd x + n 1 x n
91 3 nnne0d x + n 1 x n 0
92 89 90 91 absdivd x + n 1 x μ n n = μ n n
93 3 nnrpd x + n 1 x n +
94 rprege0 n + n 0 n
95 93 94 syl x + n 1 x n 0 n
96 absid n 0 n n = n
97 95 96 syl x + n 1 x n = n
98 97 oveq2d x + n 1 x μ n n = μ n n
99 92 98 eqtrd x + n 1 x μ n n = μ n n
100 89 abscld x + n 1 x μ n
101 1red x + n 1 x 1
102 mule1 n μ n 1
103 3 102 syl x + n 1 x μ n 1
104 100 101 93 103 lediv1dd x + n 1 x μ n n 1 n
105 99 104 eqbrtrd x + n 1 x μ n n 1 n
106 harmonicbnd4 x n + m = 1 x n 1 m log x n + γ 1 x n
107 28 106 syl x + n 1 x m = 1 x n 1 m log x n + γ 1 x n
108 rpcnne0 x + x x 0
109 108 adantr x + n 1 x x x 0
110 rpcnne0 n + n n 0
111 93 110 syl x + n 1 x n n 0
112 recdiv x x 0 n n 0 1 x n = n x
113 109 111 112 syl2anc x + n 1 x 1 x n = n x
114 107 113 breqtrd x + n 1 x m = 1 x n 1 m log x n + γ n x
115 80 81 82 86 87 88 105 114 lemul12ad x + n 1 x μ n n m = 1 x n 1 m log x n + γ 1 n n x
116 8 61 absmuld x + n 1 x μ n n m = 1 x n 1 m log x n + γ = μ n n m = 1 x n 1 m log x n + γ
117 1cnd x + n 1 x 1
118 dmdcan n n 0 x x 0 1 n x 1 n = 1 x
119 111 109 117 118 syl3anc x + n 1 x n x 1 n = 1 x
120 85 rpcnd x + n 1 x n x
121 81 recnd x + n 1 x 1 n
122 120 121 mulcomd x + n 1 x n x 1 n = 1 n n x
123 119 122 eqtr3d x + n 1 x 1 x = 1 n n x
124 115 116 123 3brtr4d x + n 1 x μ n n m = 1 x n 1 m log x n + γ 1 x
125 1 67 79 124 fsumle x + n = 1 x μ n n m = 1 x n 1 m log x n + γ n = 1 x 1 x
126 hashfz1 x 0 1 x = x
127 73 126 syl x + 1 x = x
128 127 oveq1d x + 1 x 1 x = x 1 x
129 77 rpcnd x + 1 x
130 fsumconst 1 x Fin 1 x n = 1 x 1 x = 1 x 1 x
131 1 129 130 syl2anc x + n = 1 x 1 x = 1 x 1 x
132 73 nn0cnd x + x
133 rpcn x + x
134 rpne0 x + x 0
135 132 133 134 divrecd x + x x = x 1 x
136 128 131 135 3eqtr4d x + n = 1 x 1 x = x x
137 125 136 breqtrd x + n = 1 x μ n n m = 1 x n 1 m log x n + γ x x
138 rpre x + x
139 flle x x x
140 138 139 syl x + x x
141 133 mulid1d x + x 1 = x
142 140 141 breqtrrd x + x x 1
143 reflcl x x
144 138 143 syl x + x
145 rpregt0 x + x 0 < x
146 ledivmul x 1 x 0 < x x x 1 x x 1
147 144 69 145 146 syl3anc x + x x 1 x x 1
148 142 147 mpbird x + x x 1
149 68 76 69 137 148 letrd x + n = 1 x μ n n m = 1 x n 1 m log x n + γ 1
150 66 68 69 70 149 letrd x + n = 1 x μ n n m = 1 x n 1 m log x n + γ 1
151 150 ad2antrl x + 1 x n = 1 x μ n n m = 1 x n 1 m log x n + γ 1
152 59 64 65 65 151 elo1d x + n = 1 x μ n n m = 1 x n 1 m log x n + γ 𝑂1
153 58 152 eqeltrrid x + n = 1 x μ n n m = 1 x n 1 m log x n n = 1 x μ n n γ 𝑂1
154 34 37 153 o1dif x + n = 1 x μ n n m = 1 x n 1 m log x n 𝑂1 x + n = 1 x μ n n γ 𝑂1
155 20 154 mpbird x + n = 1 x μ n n m = 1 x n 1 m log x n 𝑂1
156 155 mptru x + n = 1 x μ n n m = 1 x n 1 m log x n 𝑂1