Metamath Proof Explorer


Theorem mulrcn

Description: The functionalization of the ring multiplication operation is a continuous function in a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j J = TopOpen R
mulrcn.t T = + 𝑓 mulGrp R
Assertion mulrcn R TopRing T J × t J Cn J

Proof

Step Hyp Ref Expression
1 mulrcn.j J = TopOpen R
2 mulrcn.t T = + 𝑓 mulGrp R
3 eqid mulGrp R = mulGrp R
4 3 trgtmd R TopRing mulGrp R TopMnd
5 3 1 mgptopn J = TopOpen mulGrp R
6 5 2 tmdcn mulGrp R TopMnd T J × t J Cn J
7 4 6 syl R TopRing T J × t J Cn J