Metamath Proof Explorer


Theorem muls0ord

Description: If a surreal product is zero, one of its factors must be zero. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Hypotheses muls0ord.1 φ A No
muls0ord.2 φ B No
Assertion muls0ord φ A s B = 0 s A = 0 s B = 0 s

Proof

Step Hyp Ref Expression
1 muls0ord.1 φ A No
2 muls0ord.2 φ B No
3 muls02 B No 0 s s B = 0 s
4 2 3 syl φ 0 s s B = 0 s
5 4 adantr φ B 0 s 0 s s B = 0 s
6 5 eqeq2d φ B 0 s A s B = 0 s s B A s B = 0 s
7 1 adantr φ B 0 s A No
8 0sno 0 s No
9 8 a1i φ B 0 s 0 s No
10 2 adantr φ B 0 s B No
11 simpr φ B 0 s B 0 s
12 7 9 10 11 mulscan2d φ B 0 s A s B = 0 s s B A = 0 s
13 6 12 bitr3d φ B 0 s A s B = 0 s A = 0 s
14 13 biimpd φ B 0 s A s B = 0 s A = 0 s
15 14 impancom φ A s B = 0 s B 0 s A = 0 s
16 15 necon1bd φ A s B = 0 s ¬ A = 0 s B = 0 s
17 16 orrd φ A s B = 0 s A = 0 s B = 0 s
18 17 ex φ A s B = 0 s A = 0 s B = 0 s
19 oveq1 A = 0 s A s B = 0 s s B
20 19 eqeq1d A = 0 s A s B = 0 s 0 s s B = 0 s
21 4 20 syl5ibrcom φ A = 0 s A s B = 0 s
22 muls01 A No A s 0 s = 0 s
23 1 22 syl φ A s 0 s = 0 s
24 oveq2 B = 0 s A s B = A s 0 s
25 24 eqeq1d B = 0 s A s B = 0 s A s 0 s = 0 s
26 23 25 syl5ibrcom φ B = 0 s A s B = 0 s
27 21 26 jaod φ A = 0 s B = 0 s A s B = 0 s
28 18 27 impbid φ A s B = 0 s A = 0 s B = 0 s