Metamath Proof Explorer


Theorem muls12d

Description: Commutative/associative law for surreal multiplication. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses muls12d.1 φ A No
muls12d.2 φ B No
muls12d.3 φ C No
Assertion muls12d φ A s B s C = B s A s C

Proof

Step Hyp Ref Expression
1 muls12d.1 φ A No
2 muls12d.2 φ B No
3 muls12d.3 φ C No
4 1 2 mulscomd φ A s B = B s A
5 4 oveq1d φ A s B s C = B s A s C
6 1 2 3 mulsassd φ A s B s C = A s B s C
7 2 1 3 mulsassd φ B s A s C = B s A s C
8 5 6 7 3eqtr3d φ A s B s C = B s A s C