Metamath Proof Explorer


Theorem muls4d

Description: Rearrangement of four surreal factors. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Hypotheses muls4d.1 φ A No
muls4d.2 φ B No
muls4d.3 φ C No
muls4d.4 φ D No
Assertion muls4d φ A s B s C s D = A s C s B s D

Proof

Step Hyp Ref Expression
1 muls4d.1 φ A No
2 muls4d.2 φ B No
3 muls4d.3 φ C No
4 muls4d.4 φ D No
5 2 3 mulscomd φ B s C = C s B
6 5 oveq1d φ B s C s D = C s B s D
7 2 3 4 mulsassd φ B s C s D = B s C s D
8 3 2 4 mulsassd φ C s B s D = C s B s D
9 6 7 8 3eqtr3d φ B s C s D = C s B s D
10 9 oveq2d φ A s B s C s D = A s C s B s D
11 3 4 mulscld φ C s D No
12 1 2 11 mulsassd φ A s B s C s D = A s B s C s D
13 2 4 mulscld φ B s D No
14 1 3 13 mulsassd φ A s C s B s D = A s C s B s D
15 10 12 14 3eqtr4d φ A s B s C s D = A s C s B s D