Metamath Proof Explorer


Theorem mulsassd

Description: Associative law for surreal multiplication. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulsassd.1 φ A No
mulsassd.2 φ B No
mulsassd.3 φ C No
Assertion mulsassd φ A s B s C = A s B s C

Proof

Step Hyp Ref Expression
1 mulsassd.1 φ A No
2 mulsassd.2 φ B No
3 mulsassd.3 φ C No
4 mulsass A No B No C No A s B s C = A s B s C
5 1 2 3 4 syl3anc φ A s B s C = A s B s C