Metamath Proof Explorer


Theorem mulsasslem3

Description: Lemma for mulsass . Demonstrate the central equality. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulsasslem3.1 φ A No
mulsasslem3.2 φ B No
mulsasslem3.3 φ C No
mulsasslem3.4 P L A R A
mulsasslem3.5 Q L B R B
mulsasslem3.6 R L C R C
mulsasslem3.7 No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s yO ) x.s zO ) = ( xO x.s ( yO x.s zO ) ) ) with typecode |-
mulsasslem3.8 No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( xO x.s yO ) x.s C ) = ( xO x.s ( yO x.s C ) ) ) with typecode |-
mulsasslem3.9 No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s B ) x.s zO ) = ( xO x.s ( B x.s zO ) ) ) with typecode |-
mulsasslem3.10 No typesetting found for |- ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s yO ) x.s zO ) = ( A x.s ( yO x.s zO ) ) ) with typecode |-
mulsasslem3.11 No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( ( xO x.s B ) x.s C ) = ( xO x.s ( B x.s C ) ) ) with typecode |-
mulsasslem3.12 No typesetting found for |- ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( A x.s yO ) x.s C ) = ( A x.s ( yO x.s C ) ) ) with typecode |-
mulsasslem3.13 No typesetting found for |- ( ph -> A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s B ) x.s zO ) = ( A x.s ( B x.s zO ) ) ) with typecode |-
Assertion mulsasslem3 φ x P y Q z R a = x s B + s A s y - s x s y s C + s A s B s z - s x s B + s A s y - s x s y s z x P y Q z R a = x s B s C + s A s y s C + s B s z - s y s z - s x s y s C + s B s z - s y s z

Proof

Step Hyp Ref Expression
1 mulsasslem3.1 φ A No
2 mulsasslem3.2 φ B No
3 mulsasslem3.3 φ C No
4 mulsasslem3.4 P L A R A
5 mulsasslem3.5 Q L B R B
6 mulsasslem3.6 R L C R C
7 mulsasslem3.7 Could not format ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s yO ) x.s zO ) = ( xO x.s ( yO x.s zO ) ) ) : No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s yO ) x.s zO ) = ( xO x.s ( yO x.s zO ) ) ) with typecode |-
8 mulsasslem3.8 Could not format ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( xO x.s yO ) x.s C ) = ( xO x.s ( yO x.s C ) ) ) : No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( xO x.s yO ) x.s C ) = ( xO x.s ( yO x.s C ) ) ) with typecode |-
9 mulsasslem3.9 Could not format ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s B ) x.s zO ) = ( xO x.s ( B x.s zO ) ) ) : No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s B ) x.s zO ) = ( xO x.s ( B x.s zO ) ) ) with typecode |-
10 mulsasslem3.10 Could not format ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s yO ) x.s zO ) = ( A x.s ( yO x.s zO ) ) ) : No typesetting found for |- ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s yO ) x.s zO ) = ( A x.s ( yO x.s zO ) ) ) with typecode |-
11 mulsasslem3.11 Could not format ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( ( xO x.s B ) x.s C ) = ( xO x.s ( B x.s C ) ) ) : No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( ( xO x.s B ) x.s C ) = ( xO x.s ( B x.s C ) ) ) with typecode |-
12 mulsasslem3.12 Could not format ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( A x.s yO ) x.s C ) = ( A x.s ( yO x.s C ) ) ) : No typesetting found for |- ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( A x.s yO ) x.s C ) = ( A x.s ( yO x.s C ) ) ) with typecode |-
13 mulsasslem3.13 Could not format ( ph -> A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s B ) x.s zO ) = ( A x.s ( B x.s zO ) ) ) : No typesetting found for |- ( ph -> A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s B ) x.s zO ) = ( A x.s ( B x.s zO ) ) ) with typecode |-
14 oveq1 Could not format ( xO = x -> ( xO x.s B ) = ( x x.s B ) ) : No typesetting found for |- ( xO = x -> ( xO x.s B ) = ( x x.s B ) ) with typecode |-
15 14 oveq1d Could not format ( xO = x -> ( ( xO x.s B ) x.s C ) = ( ( x x.s B ) x.s C ) ) : No typesetting found for |- ( xO = x -> ( ( xO x.s B ) x.s C ) = ( ( x x.s B ) x.s C ) ) with typecode |-
16 oveq1 Could not format ( xO = x -> ( xO x.s ( B x.s C ) ) = ( x x.s ( B x.s C ) ) ) : No typesetting found for |- ( xO = x -> ( xO x.s ( B x.s C ) ) = ( x x.s ( B x.s C ) ) ) with typecode |-
17 15 16 eqeq12d Could not format ( xO = x -> ( ( ( xO x.s B ) x.s C ) = ( xO x.s ( B x.s C ) ) <-> ( ( x x.s B ) x.s C ) = ( x x.s ( B x.s C ) ) ) ) : No typesetting found for |- ( xO = x -> ( ( ( xO x.s B ) x.s C ) = ( xO x.s ( B x.s C ) ) <-> ( ( x x.s B ) x.s C ) = ( x x.s ( B x.s C ) ) ) ) with typecode |-
18 11 adantr Could not format ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( ( xO x.s B ) x.s C ) = ( xO x.s ( B x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( ( xO x.s B ) x.s C ) = ( xO x.s ( B x.s C ) ) ) with typecode |-
19 simprll φ x P y Q z R x P
20 4 19 sselid φ x P y Q z R x L A R A
21 17 18 20 rspcdva φ x P y Q z R x s B s C = x s B s C
22 oveq2 Could not format ( yO = y -> ( A x.s yO ) = ( A x.s y ) ) : No typesetting found for |- ( yO = y -> ( A x.s yO ) = ( A x.s y ) ) with typecode |-
23 22 oveq1d Could not format ( yO = y -> ( ( A x.s yO ) x.s C ) = ( ( A x.s y ) x.s C ) ) : No typesetting found for |- ( yO = y -> ( ( A x.s yO ) x.s C ) = ( ( A x.s y ) x.s C ) ) with typecode |-
24 oveq1 Could not format ( yO = y -> ( yO x.s C ) = ( y x.s C ) ) : No typesetting found for |- ( yO = y -> ( yO x.s C ) = ( y x.s C ) ) with typecode |-
25 24 oveq2d Could not format ( yO = y -> ( A x.s ( yO x.s C ) ) = ( A x.s ( y x.s C ) ) ) : No typesetting found for |- ( yO = y -> ( A x.s ( yO x.s C ) ) = ( A x.s ( y x.s C ) ) ) with typecode |-
26 23 25 eqeq12d Could not format ( yO = y -> ( ( ( A x.s yO ) x.s C ) = ( A x.s ( yO x.s C ) ) <-> ( ( A x.s y ) x.s C ) = ( A x.s ( y x.s C ) ) ) ) : No typesetting found for |- ( yO = y -> ( ( ( A x.s yO ) x.s C ) = ( A x.s ( yO x.s C ) ) <-> ( ( A x.s y ) x.s C ) = ( A x.s ( y x.s C ) ) ) ) with typecode |-
27 12 adantr Could not format ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( A x.s yO ) x.s C ) = ( A x.s ( yO x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( A x.s yO ) x.s C ) = ( A x.s ( yO x.s C ) ) ) with typecode |-
28 simprlr φ x P y Q z R y Q
29 5 28 sselid φ x P y Q z R y L B R B
30 26 27 29 rspcdva φ x P y Q z R A s y s C = A s y s C
31 oveq2 Could not format ( zO = z -> ( ( A x.s B ) x.s zO ) = ( ( A x.s B ) x.s z ) ) : No typesetting found for |- ( zO = z -> ( ( A x.s B ) x.s zO ) = ( ( A x.s B ) x.s z ) ) with typecode |-
32 oveq2 Could not format ( zO = z -> ( B x.s zO ) = ( B x.s z ) ) : No typesetting found for |- ( zO = z -> ( B x.s zO ) = ( B x.s z ) ) with typecode |-
33 32 oveq2d Could not format ( zO = z -> ( A x.s ( B x.s zO ) ) = ( A x.s ( B x.s z ) ) ) : No typesetting found for |- ( zO = z -> ( A x.s ( B x.s zO ) ) = ( A x.s ( B x.s z ) ) ) with typecode |-
34 31 33 eqeq12d Could not format ( zO = z -> ( ( ( A x.s B ) x.s zO ) = ( A x.s ( B x.s zO ) ) <-> ( ( A x.s B ) x.s z ) = ( A x.s ( B x.s z ) ) ) ) : No typesetting found for |- ( zO = z -> ( ( ( A x.s B ) x.s zO ) = ( A x.s ( B x.s zO ) ) <-> ( ( A x.s B ) x.s z ) = ( A x.s ( B x.s z ) ) ) ) with typecode |-
35 13 adantr Could not format ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s B ) x.s zO ) = ( A x.s ( B x.s zO ) ) ) : No typesetting found for |- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s B ) x.s zO ) = ( A x.s ( B x.s zO ) ) ) with typecode |-
36 simprr φ x P y Q z R z R
37 6 36 sselid φ x P y Q z R z L C R C
38 34 35 37 rspcdva φ x P y Q z R A s B s z = A s B s z
39 leftssno L A No
40 rightssno R A No
41 39 40 unssi L A R A No
42 4 41 sstri P No
43 42 19 sselid φ x P y Q z R x No
44 2 adantr φ x P y Q z R B No
45 43 44 mulscld φ x P y Q z R x s B No
46 leftssno L C No
47 rightssno R C No
48 46 47 unssi L C R C No
49 6 48 sstri R No
50 49 36 sselid φ x P y Q z R z No
51 45 50 mulscld φ x P y Q z R x s B s z No
52 1 adantr φ x P y Q z R A No
53 leftssno L B No
54 rightssno R B No
55 53 54 unssi L B R B No
56 5 55 sstri Q No
57 56 28 sselid φ x P y Q z R y No
58 52 57 mulscld φ x P y Q z R A s y No
59 58 50 mulscld φ x P y Q z R A s y s z No
60 51 59 addscomd φ x P y Q z R x s B s z + s A s y s z = A s y s z + s x s B s z
61 60 oveq1d φ x P y Q z R x s B s z + s A s y s z - s x s y s z = A s y s z + s x s B s z - s x s y s z
62 43 57 mulscld φ x P y Q z R x s y No
63 62 50 mulscld φ x P y Q z R x s y s z No
64 59 51 63 addsubsassd φ x P y Q z R A s y s z + s x s B s z - s x s y s z = A s y s z + s x s B s z - s x s y s z
65 61 64 eqtrd φ x P y Q z R x s B s z + s A s y s z - s x s y s z = A s y s z + s x s B s z - s x s y s z
66 65 oveq1d φ x P y Q z R x s B s z + s A s y s z - s x s y s z + s x s y s C = A s y s z + s x s B s z - s x s y s z + s x s y s C
67 51 63 subscld φ x P y Q z R x s B s z - s x s y s z No
68 3 adantr φ x P y Q z R C No
69 62 68 mulscld φ x P y Q z R x s y s C No
70 59 67 69 addsassd φ x P y Q z R A s y s z + s x s B s z - s x s y s z + s x s y s C = A s y s z + s x s B s z - s x s y s z + s x s y s C
71 22 oveq1d Could not format ( yO = y -> ( ( A x.s yO ) x.s zO ) = ( ( A x.s y ) x.s zO ) ) : No typesetting found for |- ( yO = y -> ( ( A x.s yO ) x.s zO ) = ( ( A x.s y ) x.s zO ) ) with typecode |-
72 oveq1 Could not format ( yO = y -> ( yO x.s zO ) = ( y x.s zO ) ) : No typesetting found for |- ( yO = y -> ( yO x.s zO ) = ( y x.s zO ) ) with typecode |-
73 72 oveq2d Could not format ( yO = y -> ( A x.s ( yO x.s zO ) ) = ( A x.s ( y x.s zO ) ) ) : No typesetting found for |- ( yO = y -> ( A x.s ( yO x.s zO ) ) = ( A x.s ( y x.s zO ) ) ) with typecode |-
74 71 73 eqeq12d Could not format ( yO = y -> ( ( ( A x.s yO ) x.s zO ) = ( A x.s ( yO x.s zO ) ) <-> ( ( A x.s y ) x.s zO ) = ( A x.s ( y x.s zO ) ) ) ) : No typesetting found for |- ( yO = y -> ( ( ( A x.s yO ) x.s zO ) = ( A x.s ( yO x.s zO ) ) <-> ( ( A x.s y ) x.s zO ) = ( A x.s ( y x.s zO ) ) ) ) with typecode |-
75 oveq2 Could not format ( zO = z -> ( ( A x.s y ) x.s zO ) = ( ( A x.s y ) x.s z ) ) : No typesetting found for |- ( zO = z -> ( ( A x.s y ) x.s zO ) = ( ( A x.s y ) x.s z ) ) with typecode |-
76 oveq2 Could not format ( zO = z -> ( y x.s zO ) = ( y x.s z ) ) : No typesetting found for |- ( zO = z -> ( y x.s zO ) = ( y x.s z ) ) with typecode |-
77 76 oveq2d Could not format ( zO = z -> ( A x.s ( y x.s zO ) ) = ( A x.s ( y x.s z ) ) ) : No typesetting found for |- ( zO = z -> ( A x.s ( y x.s zO ) ) = ( A x.s ( y x.s z ) ) ) with typecode |-
78 75 77 eqeq12d Could not format ( zO = z -> ( ( ( A x.s y ) x.s zO ) = ( A x.s ( y x.s zO ) ) <-> ( ( A x.s y ) x.s z ) = ( A x.s ( y x.s z ) ) ) ) : No typesetting found for |- ( zO = z -> ( ( ( A x.s y ) x.s zO ) = ( A x.s ( y x.s zO ) ) <-> ( ( A x.s y ) x.s z ) = ( A x.s ( y x.s z ) ) ) ) with typecode |-
79 10 adantr Could not format ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s yO ) x.s zO ) = ( A x.s ( yO x.s zO ) ) ) : No typesetting found for |- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s yO ) x.s zO ) = ( A x.s ( yO x.s zO ) ) ) with typecode |-
80 74 78 79 29 37 rspc2dv φ x P y Q z R A s y s z = A s y s z
81 51 69 63 addsubsd φ x P y Q z R x s B s z + s x s y s C - s x s y s z = x s B s z - s x s y s z + s x s y s C
82 14 oveq1d Could not format ( xO = x -> ( ( xO x.s B ) x.s zO ) = ( ( x x.s B ) x.s zO ) ) : No typesetting found for |- ( xO = x -> ( ( xO x.s B ) x.s zO ) = ( ( x x.s B ) x.s zO ) ) with typecode |-
83 oveq1 Could not format ( xO = x -> ( xO x.s ( B x.s zO ) ) = ( x x.s ( B x.s zO ) ) ) : No typesetting found for |- ( xO = x -> ( xO x.s ( B x.s zO ) ) = ( x x.s ( B x.s zO ) ) ) with typecode |-
84 82 83 eqeq12d Could not format ( xO = x -> ( ( ( xO x.s B ) x.s zO ) = ( xO x.s ( B x.s zO ) ) <-> ( ( x x.s B ) x.s zO ) = ( x x.s ( B x.s zO ) ) ) ) : No typesetting found for |- ( xO = x -> ( ( ( xO x.s B ) x.s zO ) = ( xO x.s ( B x.s zO ) ) <-> ( ( x x.s B ) x.s zO ) = ( x x.s ( B x.s zO ) ) ) ) with typecode |-
85 oveq2 Could not format ( zO = z -> ( ( x x.s B ) x.s zO ) = ( ( x x.s B ) x.s z ) ) : No typesetting found for |- ( zO = z -> ( ( x x.s B ) x.s zO ) = ( ( x x.s B ) x.s z ) ) with typecode |-
86 32 oveq2d Could not format ( zO = z -> ( x x.s ( B x.s zO ) ) = ( x x.s ( B x.s z ) ) ) : No typesetting found for |- ( zO = z -> ( x x.s ( B x.s zO ) ) = ( x x.s ( B x.s z ) ) ) with typecode |-
87 85 86 eqeq12d Could not format ( zO = z -> ( ( ( x x.s B ) x.s zO ) = ( x x.s ( B x.s zO ) ) <-> ( ( x x.s B ) x.s z ) = ( x x.s ( B x.s z ) ) ) ) : No typesetting found for |- ( zO = z -> ( ( ( x x.s B ) x.s zO ) = ( x x.s ( B x.s zO ) ) <-> ( ( x x.s B ) x.s z ) = ( x x.s ( B x.s z ) ) ) ) with typecode |-
88 9 adantr Could not format ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s B ) x.s zO ) = ( xO x.s ( B x.s zO ) ) ) : No typesetting found for |- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s B ) x.s zO ) = ( xO x.s ( B x.s zO ) ) ) with typecode |-
89 84 87 88 20 37 rspc2dv φ x P y Q z R x s B s z = x s B s z
90 oveq1 Could not format ( xO = x -> ( xO x.s yO ) = ( x x.s yO ) ) : No typesetting found for |- ( xO = x -> ( xO x.s yO ) = ( x x.s yO ) ) with typecode |-
91 90 oveq1d Could not format ( xO = x -> ( ( xO x.s yO ) x.s C ) = ( ( x x.s yO ) x.s C ) ) : No typesetting found for |- ( xO = x -> ( ( xO x.s yO ) x.s C ) = ( ( x x.s yO ) x.s C ) ) with typecode |-
92 oveq1 Could not format ( xO = x -> ( xO x.s ( yO x.s C ) ) = ( x x.s ( yO x.s C ) ) ) : No typesetting found for |- ( xO = x -> ( xO x.s ( yO x.s C ) ) = ( x x.s ( yO x.s C ) ) ) with typecode |-
93 91 92 eqeq12d Could not format ( xO = x -> ( ( ( xO x.s yO ) x.s C ) = ( xO x.s ( yO x.s C ) ) <-> ( ( x x.s yO ) x.s C ) = ( x x.s ( yO x.s C ) ) ) ) : No typesetting found for |- ( xO = x -> ( ( ( xO x.s yO ) x.s C ) = ( xO x.s ( yO x.s C ) ) <-> ( ( x x.s yO ) x.s C ) = ( x x.s ( yO x.s C ) ) ) ) with typecode |-
94 oveq2 Could not format ( yO = y -> ( x x.s yO ) = ( x x.s y ) ) : No typesetting found for |- ( yO = y -> ( x x.s yO ) = ( x x.s y ) ) with typecode |-
95 94 oveq1d Could not format ( yO = y -> ( ( x x.s yO ) x.s C ) = ( ( x x.s y ) x.s C ) ) : No typesetting found for |- ( yO = y -> ( ( x x.s yO ) x.s C ) = ( ( x x.s y ) x.s C ) ) with typecode |-
96 24 oveq2d Could not format ( yO = y -> ( x x.s ( yO x.s C ) ) = ( x x.s ( y x.s C ) ) ) : No typesetting found for |- ( yO = y -> ( x x.s ( yO x.s C ) ) = ( x x.s ( y x.s C ) ) ) with typecode |-
97 95 96 eqeq12d Could not format ( yO = y -> ( ( ( x x.s yO ) x.s C ) = ( x x.s ( yO x.s C ) ) <-> ( ( x x.s y ) x.s C ) = ( x x.s ( y x.s C ) ) ) ) : No typesetting found for |- ( yO = y -> ( ( ( x x.s yO ) x.s C ) = ( x x.s ( yO x.s C ) ) <-> ( ( x x.s y ) x.s C ) = ( x x.s ( y x.s C ) ) ) ) with typecode |-
98 8 adantr Could not format ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( xO x.s yO ) x.s C ) = ( xO x.s ( yO x.s C ) ) ) : No typesetting found for |- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( xO x.s yO ) x.s C ) = ( xO x.s ( yO x.s C ) ) ) with typecode |-
99 93 97 98 20 29 rspc2dv φ x P y Q z R x s y s C = x s y s C
100 89 99 oveq12d φ x P y Q z R x s B s z + s x s y s C = x s B s z + s x s y s C
101 44 50 mulscld φ x P y Q z R B s z No
102 43 101 mulscld φ x P y Q z R x s B s z No
103 57 68 mulscld φ x P y Q z R y s C No
104 43 103 mulscld φ x P y Q z R x s y s C No
105 102 104 addscomd φ x P y Q z R x s B s z + s x s y s C = x s y s C + s x s B s z
106 100 105 eqtrd φ x P y Q z R x s B s z + s x s y s C = x s y s C + s x s B s z
107 90 oveq1d Could not format ( xO = x -> ( ( xO x.s yO ) x.s zO ) = ( ( x x.s yO ) x.s zO ) ) : No typesetting found for |- ( xO = x -> ( ( xO x.s yO ) x.s zO ) = ( ( x x.s yO ) x.s zO ) ) with typecode |-
108 oveq1 Could not format ( xO = x -> ( xO x.s ( yO x.s zO ) ) = ( x x.s ( yO x.s zO ) ) ) : No typesetting found for |- ( xO = x -> ( xO x.s ( yO x.s zO ) ) = ( x x.s ( yO x.s zO ) ) ) with typecode |-
109 107 108 eqeq12d Could not format ( xO = x -> ( ( ( xO x.s yO ) x.s zO ) = ( xO x.s ( yO x.s zO ) ) <-> ( ( x x.s yO ) x.s zO ) = ( x x.s ( yO x.s zO ) ) ) ) : No typesetting found for |- ( xO = x -> ( ( ( xO x.s yO ) x.s zO ) = ( xO x.s ( yO x.s zO ) ) <-> ( ( x x.s yO ) x.s zO ) = ( x x.s ( yO x.s zO ) ) ) ) with typecode |-
110 94 oveq1d Could not format ( yO = y -> ( ( x x.s yO ) x.s zO ) = ( ( x x.s y ) x.s zO ) ) : No typesetting found for |- ( yO = y -> ( ( x x.s yO ) x.s zO ) = ( ( x x.s y ) x.s zO ) ) with typecode |-
111 72 oveq2d Could not format ( yO = y -> ( x x.s ( yO x.s zO ) ) = ( x x.s ( y x.s zO ) ) ) : No typesetting found for |- ( yO = y -> ( x x.s ( yO x.s zO ) ) = ( x x.s ( y x.s zO ) ) ) with typecode |-
112 110 111 eqeq12d Could not format ( yO = y -> ( ( ( x x.s yO ) x.s zO ) = ( x x.s ( yO x.s zO ) ) <-> ( ( x x.s y ) x.s zO ) = ( x x.s ( y x.s zO ) ) ) ) : No typesetting found for |- ( yO = y -> ( ( ( x x.s yO ) x.s zO ) = ( x x.s ( yO x.s zO ) ) <-> ( ( x x.s y ) x.s zO ) = ( x x.s ( y x.s zO ) ) ) ) with typecode |-
113 oveq2 Could not format ( zO = z -> ( ( x x.s y ) x.s zO ) = ( ( x x.s y ) x.s z ) ) : No typesetting found for |- ( zO = z -> ( ( x x.s y ) x.s zO ) = ( ( x x.s y ) x.s z ) ) with typecode |-
114 76 oveq2d Could not format ( zO = z -> ( x x.s ( y x.s zO ) ) = ( x x.s ( y x.s z ) ) ) : No typesetting found for |- ( zO = z -> ( x x.s ( y x.s zO ) ) = ( x x.s ( y x.s z ) ) ) with typecode |-
115 113 114 eqeq12d Could not format ( zO = z -> ( ( ( x x.s y ) x.s zO ) = ( x x.s ( y x.s zO ) ) <-> ( ( x x.s y ) x.s z ) = ( x x.s ( y x.s z ) ) ) ) : No typesetting found for |- ( zO = z -> ( ( ( x x.s y ) x.s zO ) = ( x x.s ( y x.s zO ) ) <-> ( ( x x.s y ) x.s z ) = ( x x.s ( y x.s z ) ) ) ) with typecode |-
116 7 adantr Could not format ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s yO ) x.s zO ) = ( xO x.s ( yO x.s zO ) ) ) : No typesetting found for |- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s yO ) x.s zO ) = ( xO x.s ( yO x.s zO ) ) ) with typecode |-
117 109 112 115 116 20 29 37 rspc3dv φ x P y Q z R x s y s z = x s y s z
118 106 117 oveq12d φ x P y Q z R x s B s z + s x s y s C - s x s y s z = x s y s C + s x s B s z - s x s y s z
119 81 118 eqtr3d φ x P y Q z R x s B s z - s x s y s z + s x s y s C = x s y s C + s x s B s z - s x s y s z
120 80 119 oveq12d φ x P y Q z R A s y s z + s x s B s z - s x s y s z + s x s y s C = A s y s z + s x s y s C + s x s B s z - s x s y s z
121 66 70 120 3eqtrd φ x P y Q z R x s B s z + s A s y s z - s x s y s z + s x s y s C = A s y s z + s x s y s C + s x s B s z - s x s y s z
122 38 121 oveq12d φ x P y Q z R A s B s z - s x s B s z + s A s y s z - s x s y s z + s x s y s C = A s B s z - s A s y s z + s x s y s C + s x s B s z - s x s y s z
123 52 44 mulscld φ x P y Q z R A s B No
124 123 50 mulscld φ x P y Q z R A s B s z No
125 51 59 addscld φ x P y Q z R x s B s z + s A s y s z No
126 125 63 subscld φ x P y Q z R x s B s z + s A s y s z - s x s y s z No
127 124 126 69 subsubs4d φ x P y Q z R A s B s z - s x s B s z + s A s y s z - s x s y s z - s x s y s C = A s B s z - s x s B s z + s A s y s z - s x s y s z + s x s y s C
128 52 101 mulscld φ x P y Q z R A s B s z No
129 57 50 mulscld φ x P y Q z R y s z No
130 52 129 mulscld φ x P y Q z R A s y s z No
131 104 102 addscld φ x P y Q z R x s y s C + s x s B s z No
132 43 129 mulscld φ x P y Q z R x s y s z No
133 131 132 subscld φ x P y Q z R x s y s C + s x s B s z - s x s y s z No
134 128 130 133 subsubs4d φ x P y Q z R A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z = A s B s z - s A s y s z + s x s y s C + s x s B s z - s x s y s z
135 122 127 134 3eqtr4d φ x P y Q z R A s B s z - s x s B s z + s A s y s z - s x s y s z - s x s y s C = A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z
136 30 135 oveq12d φ x P y Q z R A s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z - s x s y s C = A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z
137 58 68 mulscld φ x P y Q z R A s y s C No
138 124 126 subscld φ x P y Q z R A s B s z - s x s B s z + s A s y s z - s x s y s z No
139 137 138 69 addsubsd φ x P y Q z R A s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z - s x s y s C = A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z
140 137 138 69 addsubsassd φ x P y Q z R A s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z - s x s y s C = A s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z - s x s y s C
141 139 140 eqtr3d φ x P y Q z R A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z = A s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z - s x s y s C
142 52 103 mulscld φ x P y Q z R A s y s C No
143 142 128 130 addsubsassd φ x P y Q z R A s y s C + s A s B s z - s A s y s z = A s y s C + s A s B s z - s A s y s z
144 143 oveq1d φ x P y Q z R A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z = A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z
145 128 130 subscld φ x P y Q z R A s B s z - s A s y s z No
146 142 145 133 addsubsassd φ x P y Q z R A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z = A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z
147 144 146 eqtrd φ x P y Q z R A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z = A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z
148 136 141 147 3eqtr4d φ x P y Q z R A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z = A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z
149 21 148 oveq12d φ x P y Q z R x s B s C + s A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z = x s B s C + s A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z
150 45 68 mulscld φ x P y Q z R x s B s C No
151 150 137 addscld φ x P y Q z R x s B s C + s A s y s C No
152 151 69 subscld φ x P y Q z R x s B s C + s A s y s C - s x s y s C No
153 152 124 126 addsubsassd φ x P y Q z R x s B s C + s A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z = x s B s C + s A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z
154 150 137 69 addsubsassd φ x P y Q z R x s B s C + s A s y s C - s x s y s C = x s B s C + s A s y s C - s x s y s C
155 154 oveq1d φ x P y Q z R x s B s C + s A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z = x s B s C + s A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z
156 137 69 subscld φ x P y Q z R A s y s C - s x s y s C No
157 150 156 138 addsassd φ x P y Q z R x s B s C + s A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z = x s B s C + s A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z
158 153 155 157 3eqtrd φ x P y Q z R x s B s C + s A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z = x s B s C + s A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z
159 44 68 mulscld φ x P y Q z R B s C No
160 43 159 mulscld φ x P y Q z R x s B s C No
161 142 128 addscld φ x P y Q z R A s y s C + s A s B s z No
162 161 130 subscld φ x P y Q z R A s y s C + s A s B s z - s A s y s z No
163 160 162 133 addsubsassd φ x P y Q z R x s B s C + s A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z = x s B s C + s A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z
164 149 158 163 3eqtr4d φ x P y Q z R x s B s C + s A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z = x s B s C + s A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z
165 45 58 addscld φ x P y Q z R x s B + s A s y No
166 165 62 68 subsdird φ x P y Q z R x s B + s A s y - s x s y s C = x s B + s A s y s C - s x s y s C
167 45 58 68 addsdird φ x P y Q z R x s B + s A s y s C = x s B s C + s A s y s C
168 167 oveq1d φ x P y Q z R x s B + s A s y s C - s x s y s C = x s B s C + s A s y s C - s x s y s C
169 166 168 eqtrd φ x P y Q z R x s B + s A s y - s x s y s C = x s B s C + s A s y s C - s x s y s C
170 169 oveq1d φ x P y Q z R x s B + s A s y - s x s y s C + s A s B s z = x s B s C + s A s y s C - s x s y s C + s A s B s z
171 165 62 50 subsdird φ x P y Q z R x s B + s A s y - s x s y s z = x s B + s A s y s z - s x s y s z
172 45 58 50 addsdird φ x P y Q z R x s B + s A s y s z = x s B s z + s A s y s z
173 172 oveq1d φ x P y Q z R x s B + s A s y s z - s x s y s z = x s B s z + s A s y s z - s x s y s z
174 171 173 eqtrd φ x P y Q z R x s B + s A s y - s x s y s z = x s B s z + s A s y s z - s x s y s z
175 170 174 oveq12d φ x P y Q z R x s B + s A s y - s x s y s C + s A s B s z - s x s B + s A s y - s x s y s z = x s B s C + s A s y s C - s x s y s C + s A s B s z - s x s B s z + s A s y s z - s x s y s z
176 103 101 addscld φ x P y Q z R y s C + s B s z No
177 52 176 129 subsdid φ x P y Q z R A s y s C + s B s z - s y s z = A s y s C + s B s z - s A s y s z
178 52 103 101 addsdid φ x P y Q z R A s y s C + s B s z = A s y s C + s A s B s z
179 178 oveq1d φ x P y Q z R A s y s C + s B s z - s A s y s z = A s y s C + s A s B s z - s A s y s z
180 177 179 eqtrd φ x P y Q z R A s y s C + s B s z - s y s z = A s y s C + s A s B s z - s A s y s z
181 180 oveq2d φ x P y Q z R x s B s C + s A s y s C + s B s z - s y s z = x s B s C + s A s y s C + s A s B s z - s A s y s z
182 43 176 129 subsdid φ x P y Q z R x s y s C + s B s z - s y s z = x s y s C + s B s z - s x s y s z
183 43 103 101 addsdid φ x P y Q z R x s y s C + s B s z = x s y s C + s x s B s z
184 183 oveq1d φ x P y Q z R x s y s C + s B s z - s x s y s z = x s y s C + s x s B s z - s x s y s z
185 182 184 eqtrd φ x P y Q z R x s y s C + s B s z - s y s z = x s y s C + s x s B s z - s x s y s z
186 181 185 oveq12d φ x P y Q z R x s B s C + s A s y s C + s B s z - s y s z - s x s y s C + s B s z - s y s z = x s B s C + s A s y s C + s A s B s z - s A s y s z - s x s y s C + s x s B s z - s x s y s z
187 164 175 186 3eqtr4d φ x P y Q z R x s B + s A s y - s x s y s C + s A s B s z - s x s B + s A s y - s x s y s z = x s B s C + s A s y s C + s B s z - s y s z - s x s y s C + s B s z - s y s z
188 187 eqeq2d φ x P y Q z R a = x s B + s A s y - s x s y s C + s A s B s z - s x s B + s A s y - s x s y s z a = x s B s C + s A s y s C + s B s z - s y s z - s x s y s C + s B s z - s y s z
189 188 anassrs φ x P y Q z R a = x s B + s A s y - s x s y s C + s A s B s z - s x s B + s A s y - s x s y s z a = x s B s C + s A s y s C + s B s z - s y s z - s x s y s C + s B s z - s y s z
190 189 rexbidva φ x P y Q z R a = x s B + s A s y - s x s y s C + s A s B s z - s x s B + s A s y - s x s y s z z R a = x s B s C + s A s y s C + s B s z - s y s z - s x s y s C + s B s z - s y s z
191 190 2rexbidva φ x P y Q z R a = x s B + s A s y - s x s y s C + s A s B s z - s x s B + s A s y - s x s y s z x P y Q z R a = x s B s C + s A s y s C + s B s z - s y s z - s x s y s C + s B s z - s y s z