Metamath Proof Explorer


Theorem mulscan2d

Description: Cancellation of surreal multiplication when the right term is non-zero. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulscan2d.1 φ A No
mulscan2d.2 φ B No
mulscan2d.3 φ C No
mulscan2d.4 φ C 0 s
Assertion mulscan2d φ A s C = B s C A = B

Proof

Step Hyp Ref Expression
1 mulscan2d.1 φ A No
2 mulscan2d.2 φ B No
3 mulscan2d.3 φ C No
4 mulscan2d.4 φ C 0 s
5 0sno 0 s No
6 sltneg C No 0 s No C < s 0 s + s 0 s < s + s C
7 3 5 6 sylancl φ C < s 0 s + s 0 s < s + s C
8 negs0s + s 0 s = 0 s
9 8 breq1i + s 0 s < s + s C 0 s < s + s C
10 7 9 bitrdi φ C < s 0 s 0 s < s + s C
11 1 3 mulnegs2d φ A s + s C = + s A s C
12 2 3 mulnegs2d φ B s + s C = + s B s C
13 11 12 eqeq12d φ A s + s C = B s + s C + s A s C = + s B s C
14 1 3 mulscld φ A s C No
15 2 3 mulscld φ B s C No
16 negs11 A s C No B s C No + s A s C = + s B s C A s C = B s C
17 14 15 16 syl2anc φ + s A s C = + s B s C A s C = B s C
18 13 17 bitrd φ A s + s C = B s + s C A s C = B s C
19 18 adantr φ 0 s < s + s C A s + s C = B s + s C A s C = B s C
20 1 adantr φ 0 s < s + s C A No
21 2 adantr φ 0 s < s + s C B No
22 3 negscld φ + s C No
23 22 adantr φ 0 s < s + s C + s C No
24 simpr φ 0 s < s + s C 0 s < s + s C
25 20 21 23 24 mulscan2dlem φ 0 s < s + s C A s + s C = B s + s C A = B
26 19 25 bitr3d φ 0 s < s + s C A s C = B s C A = B
27 10 26 sylbida φ C < s 0 s A s C = B s C A = B
28 1 adantr φ 0 s < s C A No
29 2 adantr φ 0 s < s C B No
30 3 adantr φ 0 s < s C C No
31 simpr φ 0 s < s C 0 s < s C
32 28 29 30 31 mulscan2dlem φ 0 s < s C A s C = B s C A = B
33 slttrine C No 0 s No C 0 s C < s 0 s 0 s < s C
34 3 5 33 sylancl φ C 0 s C < s 0 s 0 s < s C
35 4 34 mpbid φ C < s 0 s 0 s < s C
36 27 32 35 mpjaodan φ A s C = B s C A = B