Metamath Proof Explorer


Theorem mulscan2dlem

Description: Lemma for mulscan2d . Cancellation of multiplication when the right term is positive. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulscan2d.1 φ A No
mulscan2d.2 φ B No
mulscan2d.3 φ C No
mulscan2dlem.1 φ 0 s < s C
Assertion mulscan2dlem φ A s C = B s C A = B

Proof

Step Hyp Ref Expression
1 mulscan2d.1 φ A No
2 mulscan2d.2 φ B No
3 mulscan2d.3 φ C No
4 mulscan2dlem.1 φ 0 s < s C
5 1 2 3 4 slemul1d φ A s B A s C s B s C
6 2 1 3 4 slemul1d φ B s A B s C s A s C
7 5 6 anbi12d φ A s B B s A A s C s B s C B s C s A s C
8 sletri3 A No B No A = B A s B B s A
9 1 2 8 syl2anc φ A = B A s B B s A
10 1 3 mulscld φ A s C No
11 2 3 mulscld φ B s C No
12 sletri3 A s C No B s C No A s C = B s C A s C s B s C B s C s A s C
13 10 11 12 syl2anc φ A s C = B s C A s C s B s C B s C s A s C
14 7 9 13 3bitr4rd φ A s C = B s C A = B