Metamath Proof Explorer


Theorem mulscan2dlem

Description: Lemma for mulscan2d . Cancellation of multiplication when the right term is positive. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulscan2d.1 φ A No
mulscan2d.2 φ B No
mulscan2d.3 φ C No
mulscan2dlem.1 No typesetting found for |- ( ph -> 0s
Assertion mulscan2dlem Could not format assertion : No typesetting found for |- ( ph -> ( ( A x.s C ) = ( B x.s C ) <-> A = B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mulscan2d.1 φ A No
2 mulscan2d.2 φ B No
3 mulscan2d.3 φ C No
4 mulscan2dlem.1 Could not format ( ph -> 0s 0s
5 1 2 3 4 slemul1d Could not format ( ph -> ( A <_s B <-> ( A x.s C ) <_s ( B x.s C ) ) ) : No typesetting found for |- ( ph -> ( A <_s B <-> ( A x.s C ) <_s ( B x.s C ) ) ) with typecode |-
6 2 1 3 4 slemul1d Could not format ( ph -> ( B <_s A <-> ( B x.s C ) <_s ( A x.s C ) ) ) : No typesetting found for |- ( ph -> ( B <_s A <-> ( B x.s C ) <_s ( A x.s C ) ) ) with typecode |-
7 5 6 anbi12d Could not format ( ph -> ( ( A <_s B /\ B <_s A ) <-> ( ( A x.s C ) <_s ( B x.s C ) /\ ( B x.s C ) <_s ( A x.s C ) ) ) ) : No typesetting found for |- ( ph -> ( ( A <_s B /\ B <_s A ) <-> ( ( A x.s C ) <_s ( B x.s C ) /\ ( B x.s C ) <_s ( A x.s C ) ) ) ) with typecode |-
8 sletri3 A No B No A = B A s B B s A
9 1 2 8 syl2anc φ A = B A s B B s A
10 1 3 mulscld Could not format ( ph -> ( A x.s C ) e. No ) : No typesetting found for |- ( ph -> ( A x.s C ) e. No ) with typecode |-
11 2 3 mulscld Could not format ( ph -> ( B x.s C ) e. No ) : No typesetting found for |- ( ph -> ( B x.s C ) e. No ) with typecode |-
12 sletri3 Could not format ( ( ( A x.s C ) e. No /\ ( B x.s C ) e. No ) -> ( ( A x.s C ) = ( B x.s C ) <-> ( ( A x.s C ) <_s ( B x.s C ) /\ ( B x.s C ) <_s ( A x.s C ) ) ) ) : No typesetting found for |- ( ( ( A x.s C ) e. No /\ ( B x.s C ) e. No ) -> ( ( A x.s C ) = ( B x.s C ) <-> ( ( A x.s C ) <_s ( B x.s C ) /\ ( B x.s C ) <_s ( A x.s C ) ) ) ) with typecode |-
13 10 11 12 syl2anc Could not format ( ph -> ( ( A x.s C ) = ( B x.s C ) <-> ( ( A x.s C ) <_s ( B x.s C ) /\ ( B x.s C ) <_s ( A x.s C ) ) ) ) : No typesetting found for |- ( ph -> ( ( A x.s C ) = ( B x.s C ) <-> ( ( A x.s C ) <_s ( B x.s C ) /\ ( B x.s C ) <_s ( A x.s C ) ) ) ) with typecode |-
14 7 9 13 3bitr4rd Could not format ( ph -> ( ( A x.s C ) = ( B x.s C ) <-> A = B ) ) : No typesetting found for |- ( ph -> ( ( A x.s C ) = ( B x.s C ) <-> A = B ) ) with typecode |-