Metamath Proof Explorer


Theorem mulsfn

Description: Surreal multiplication is a function over surreals. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion mulsfn s Fn No × No

Proof

Step Hyp Ref Expression
1 df-muls s = norec2 s #A# z V , m V 1 st z / x 2 nd z / y a | p L x q L y a = p m y + s x m q - s p m q b | r R x s R y b = r m y + s x m s - s r m s | s c | t L x u R y c = t m y + s x m u - s t m u d | v R x w L y d = v m y + s x m w - s v m w
2 1 norec2fn s Fn No × No