Metamath Proof Explorer


Theorem mulsne0bd

Description: The product of two non-zero surreals is non-zero. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Hypotheses muls0ord.1 φ A No
muls0ord.2 φ B No
Assertion mulsne0bd φ A s B 0 s A 0 s B 0 s

Proof

Step Hyp Ref Expression
1 muls0ord.1 φ A No
2 muls0ord.2 φ B No
3 1 2 muls0ord φ A s B = 0 s A = 0 s B = 0 s
4 3 necon3abid φ A s B 0 s ¬ A = 0 s B = 0 s
5 neanior A 0 s B 0 s ¬ A = 0 s B = 0 s
6 4 5 bitr4di φ A s B 0 s A 0 s B 0 s