Metamath Proof Explorer


Theorem mulsproplem9

Description: Lemma for surreal multiplication. Show that the cut involved in surreal multiplication makes sense. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypotheses mulsproplem.1 φaNobNocNodNoeNofNobdaya+bdaybbdayc+bdayebdayd+bdayfbdayc+bdayfbdayd+bdayebdayA+bdayBbdayC+bdayEbdayD+bdayFbdayC+bdayFbdayD+bdayEasbNoc<sde<sfcsf-scse<sdsf-sdse
mulsproplem9.1 φANo
mulsproplem9.2 φBNo
Assertion mulsproplem9 φg|pLAqLBg=psB+sAsq-spsqh|rRAsRBh=rsB+sAss-srsssi|tLAuRBi=tsB+sAsu-stsuj|vRAwLBj=vsB+sAsw-svsw

Proof

Step Hyp Ref Expression
1 mulsproplem.1 φaNobNocNodNoeNofNobdaya+bdaybbdayc+bdayebdayd+bdayfbdayc+bdayfbdayd+bdayebdayA+bdayBbdayC+bdayEbdayD+bdayFbdayC+bdayFbdayD+bdayEasbNoc<sde<sfcsf-scse<sdsf-sdse
2 mulsproplem9.1 φANo
3 mulsproplem9.2 φBNo
4 eqid pLA,qLBpsB+sAsq-spsq=pLA,qLBpsB+sAsq-spsq
5 4 rnmpo ranpLA,qLBpsB+sAsq-spsq=g|pLAqLBg=psB+sAsq-spsq
6 fvex LAV
7 fvex LBV
8 6 7 mpoex pLA,qLBpsB+sAsq-spsqV
9 8 rnex ranpLA,qLBpsB+sAsq-spsqV
10 5 9 eqeltrri g|pLAqLBg=psB+sAsq-spsqV
11 eqid rRA,sRBrsB+sAss-srss=rRA,sRBrsB+sAss-srss
12 11 rnmpo ranrRA,sRBrsB+sAss-srss=h|rRAsRBh=rsB+sAss-srss
13 fvex RAV
14 fvex RBV
15 13 14 mpoex rRA,sRBrsB+sAss-srssV
16 15 rnex ranrRA,sRBrsB+sAss-srssV
17 12 16 eqeltrri h|rRAsRBh=rsB+sAss-srssV
18 10 17 unex g|pLAqLBg=psB+sAsq-spsqh|rRAsRBh=rsB+sAss-srssV
19 18 a1i φg|pLAqLBg=psB+sAsq-spsqh|rRAsRBh=rsB+sAss-srssV
20 eqid tLA,uRBtsB+sAsu-stsu=tLA,uRBtsB+sAsu-stsu
21 20 rnmpo rantLA,uRBtsB+sAsu-stsu=i|tLAuRBi=tsB+sAsu-stsu
22 6 14 mpoex tLA,uRBtsB+sAsu-stsuV
23 22 rnex rantLA,uRBtsB+sAsu-stsuV
24 21 23 eqeltrri i|tLAuRBi=tsB+sAsu-stsuV
25 eqid vRA,wLBvsB+sAsw-svsw=vRA,wLBvsB+sAsw-svsw
26 25 rnmpo ranvRA,wLBvsB+sAsw-svsw=j|vRAwLBj=vsB+sAsw-svsw
27 13 7 mpoex vRA,wLBvsB+sAsw-svswV
28 27 rnex ranvRA,wLBvsB+sAsw-svswV
29 26 28 eqeltrri j|vRAwLBj=vsB+sAsw-svswV
30 24 29 unex i|tLAuRBi=tsB+sAsu-stsuj|vRAwLBj=vsB+sAsw-svswV
31 30 a1i φi|tLAuRBi=tsB+sAsu-stsuj|vRAwLBj=vsB+sAsw-svswV
32 1 adantr φpLAqLBaNobNocNodNoeNofNobdaya+bdaybbdayc+bdayebdayd+bdayfbdayc+bdayfbdayd+bdayebdayA+bdayBbdayC+bdayEbdayD+bdayFbdayC+bdayFbdayD+bdayEasbNoc<sde<sfcsf-scse<sdsf-sdse
33 leftssold LAOldbdayA
34 simprl φpLAqLBpLA
35 33 34 sselid φpLAqLBpOldbdayA
36 3 adantr φpLAqLBBNo
37 32 35 36 mulsproplem2 φpLAqLBpsBNo
38 2 adantr φpLAqLBANo
39 leftssold LBOldbdayB
40 simprr φpLAqLBqLB
41 39 40 sselid φpLAqLBqOldbdayB
42 32 38 41 mulsproplem3 φpLAqLBAsqNo
43 37 42 addscld φpLAqLBpsB+sAsqNo
44 32 35 41 mulsproplem4 φpLAqLBpsqNo
45 43 44 subscld φpLAqLBpsB+sAsq-spsqNo
46 eleq1 g=psB+sAsq-spsqgNopsB+sAsq-spsqNo
47 45 46 syl5ibrcom φpLAqLBg=psB+sAsq-spsqgNo
48 47 rexlimdvva φpLAqLBg=psB+sAsq-spsqgNo
49 48 abssdv φg|pLAqLBg=psB+sAsq-spsqNo
50 1 adantr φrRAsRBaNobNocNodNoeNofNobdaya+bdaybbdayc+bdayebdayd+bdayfbdayc+bdayfbdayd+bdayebdayA+bdayBbdayC+bdayEbdayD+bdayFbdayC+bdayFbdayD+bdayEasbNoc<sde<sfcsf-scse<sdsf-sdse
51 rightssold RAOldbdayA
52 simprl φrRAsRBrRA
53 51 52 sselid φrRAsRBrOldbdayA
54 3 adantr φrRAsRBBNo
55 50 53 54 mulsproplem2 φrRAsRBrsBNo
56 2 adantr φrRAsRBANo
57 rightssold RBOldbdayB
58 simprr φrRAsRBsRB
59 57 58 sselid φrRAsRBsOldbdayB
60 50 56 59 mulsproplem3 φrRAsRBAssNo
61 55 60 addscld φrRAsRBrsB+sAssNo
62 50 53 59 mulsproplem4 φrRAsRBrssNo
63 61 62 subscld φrRAsRBrsB+sAss-srssNo
64 eleq1 h=rsB+sAss-srsshNorsB+sAss-srssNo
65 63 64 syl5ibrcom φrRAsRBh=rsB+sAss-srsshNo
66 65 rexlimdvva φrRAsRBh=rsB+sAss-srsshNo
67 66 abssdv φh|rRAsRBh=rsB+sAss-srssNo
68 49 67 unssd φg|pLAqLBg=psB+sAsq-spsqh|rRAsRBh=rsB+sAss-srssNo
69 1 adantr φtLAuRBaNobNocNodNoeNofNobdaya+bdaybbdayc+bdayebdayd+bdayfbdayc+bdayfbdayd+bdayebdayA+bdayBbdayC+bdayEbdayD+bdayFbdayC+bdayFbdayD+bdayEasbNoc<sde<sfcsf-scse<sdsf-sdse
70 simprl φtLAuRBtLA
71 33 70 sselid φtLAuRBtOldbdayA
72 3 adantr φtLAuRBBNo
73 69 71 72 mulsproplem2 φtLAuRBtsBNo
74 2 adantr φtLAuRBANo
75 simprr φtLAuRBuRB
76 57 75 sselid φtLAuRBuOldbdayB
77 69 74 76 mulsproplem3 φtLAuRBAsuNo
78 73 77 addscld φtLAuRBtsB+sAsuNo
79 69 71 76 mulsproplem4 φtLAuRBtsuNo
80 78 79 subscld φtLAuRBtsB+sAsu-stsuNo
81 eleq1 i=tsB+sAsu-stsuiNotsB+sAsu-stsuNo
82 80 81 syl5ibrcom φtLAuRBi=tsB+sAsu-stsuiNo
83 82 rexlimdvva φtLAuRBi=tsB+sAsu-stsuiNo
84 83 abssdv φi|tLAuRBi=tsB+sAsu-stsuNo
85 1 adantr φvRAwLBaNobNocNodNoeNofNobdaya+bdaybbdayc+bdayebdayd+bdayfbdayc+bdayfbdayd+bdayebdayA+bdayBbdayC+bdayEbdayD+bdayFbdayC+bdayFbdayD+bdayEasbNoc<sde<sfcsf-scse<sdsf-sdse
86 simprl φvRAwLBvRA
87 51 86 sselid φvRAwLBvOldbdayA
88 3 adantr φvRAwLBBNo
89 85 87 88 mulsproplem2 φvRAwLBvsBNo
90 2 adantr φvRAwLBANo
91 simprr φvRAwLBwLB
92 39 91 sselid φvRAwLBwOldbdayB
93 85 90 92 mulsproplem3 φvRAwLBAswNo
94 89 93 addscld φvRAwLBvsB+sAswNo
95 85 87 92 mulsproplem4 φvRAwLBvswNo
96 94 95 subscld φvRAwLBvsB+sAsw-svswNo
97 eleq1 j=vsB+sAsw-svswjNovsB+sAsw-svswNo
98 96 97 syl5ibrcom φvRAwLBj=vsB+sAsw-svswjNo
99 98 rexlimdvva φvRAwLBj=vsB+sAsw-svswjNo
100 99 abssdv φj|vRAwLBj=vsB+sAsw-svswNo
101 84 100 unssd φi|tLAuRBi=tsB+sAsu-stsuj|vRAwLBj=vsB+sAsw-svswNo
102 elun xg|pLAqLBg=psB+sAsq-spsqh|rRAsRBh=rsB+sAss-srssxg|pLAqLBg=psB+sAsq-spsqxh|rRAsRBh=rsB+sAss-srss
103 vex xV
104 eqeq1 g=xg=psB+sAsq-spsqx=psB+sAsq-spsq
105 104 2rexbidv g=xpLAqLBg=psB+sAsq-spsqpLAqLBx=psB+sAsq-spsq
106 103 105 elab xg|pLAqLBg=psB+sAsq-spsqpLAqLBx=psB+sAsq-spsq
107 eqeq1 h=xh=rsB+sAss-srssx=rsB+sAss-srss
108 107 2rexbidv h=xrRAsRBh=rsB+sAss-srssrRAsRBx=rsB+sAss-srss
109 103 108 elab xh|rRAsRBh=rsB+sAss-srssrRAsRBx=rsB+sAss-srss
110 106 109 orbi12i xg|pLAqLBg=psB+sAsq-spsqxh|rRAsRBh=rsB+sAss-srsspLAqLBx=psB+sAsq-spsqrRAsRBx=rsB+sAss-srss
111 102 110 bitri xg|pLAqLBg=psB+sAsq-spsqh|rRAsRBh=rsB+sAss-srsspLAqLBx=psB+sAsq-spsqrRAsRBx=rsB+sAss-srss
112 elun yi|tLAuRBi=tsB+sAsu-stsuj|vRAwLBj=vsB+sAsw-svswyi|tLAuRBi=tsB+sAsu-stsuyj|vRAwLBj=vsB+sAsw-svsw
113 vex yV
114 eqeq1 i=yi=tsB+sAsu-stsuy=tsB+sAsu-stsu
115 114 2rexbidv i=ytLAuRBi=tsB+sAsu-stsutLAuRBy=tsB+sAsu-stsu
116 113 115 elab yi|tLAuRBi=tsB+sAsu-stsutLAuRBy=tsB+sAsu-stsu
117 eqeq1 j=yj=vsB+sAsw-svswy=vsB+sAsw-svsw
118 117 2rexbidv j=yvRAwLBj=vsB+sAsw-svswvRAwLBy=vsB+sAsw-svsw
119 113 118 elab yj|vRAwLBj=vsB+sAsw-svswvRAwLBy=vsB+sAsw-svsw
120 116 119 orbi12i yi|tLAuRBi=tsB+sAsu-stsuyj|vRAwLBj=vsB+sAsw-svswtLAuRBy=tsB+sAsu-stsuvRAwLBy=vsB+sAsw-svsw
121 112 120 bitri yi|tLAuRBi=tsB+sAsu-stsuj|vRAwLBj=vsB+sAsw-svswtLAuRBy=tsB+sAsu-stsuvRAwLBy=vsB+sAsw-svsw
122 111 121 anbi12i xg|pLAqLBg=psB+sAsq-spsqh|rRAsRBh=rsB+sAss-srssyi|tLAuRBi=tsB+sAsu-stsuj|vRAwLBj=vsB+sAsw-svswpLAqLBx=psB+sAsq-spsqrRAsRBx=rsB+sAss-srsstLAuRBy=tsB+sAsu-stsuvRAwLBy=vsB+sAsw-svsw
123 anddi pLAqLBx=psB+sAsq-spsqrRAsRBx=rsB+sAss-srsstLAuRBy=tsB+sAsu-stsuvRAwLBy=vsB+sAsw-svswpLAqLBx=psB+sAsq-spsqtLAuRBy=tsB+sAsu-stsupLAqLBx=psB+sAsq-spsqvRAwLBy=vsB+sAsw-svswrRAsRBx=rsB+sAss-srsstLAuRBy=tsB+sAsu-stsurRAsRBx=rsB+sAss-srssvRAwLBy=vsB+sAsw-svsw
124 122 123 bitri xg|pLAqLBg=psB+sAsq-spsqh|rRAsRBh=rsB+sAss-srssyi|tLAuRBi=tsB+sAsu-stsuj|vRAwLBj=vsB+sAsw-svswpLAqLBx=psB+sAsq-spsqtLAuRBy=tsB+sAsu-stsupLAqLBx=psB+sAsq-spsqvRAwLBy=vsB+sAsw-svswrRAsRBx=rsB+sAss-srsstLAuRBy=tsB+sAsu-stsurRAsRBx=rsB+sAss-srssvRAwLBy=vsB+sAsw-svsw
125 1 adantr φpLAqLBtLAuRBaNobNocNodNoeNofNobdaya+bdaybbdayc+bdayebdayd+bdayfbdayc+bdayfbdayd+bdayebdayA+bdayBbdayC+bdayEbdayD+bdayFbdayC+bdayFbdayD+bdayEasbNoc<sde<sfcsf-scse<sdsf-sdse
126 2 adantr φpLAqLBtLAuRBANo
127 3 adantr φpLAqLBtLAuRBBNo
128 simprll φpLAqLBtLAuRBpLA
129 simprlr φpLAqLBtLAuRBqLB
130 simprrl φpLAqLBtLAuRBtLA
131 simprrr φpLAqLBtLAuRBuRB
132 125 126 127 128 129 130 131 mulsproplem5 φpLAqLBtLAuRBpsB+sAsq-spsq<stsB+sAsu-stsu
133 breq2 y=tsB+sAsu-stsupsB+sAsq-spsq<sypsB+sAsq-spsq<stsB+sAsu-stsu
134 132 133 syl5ibrcom φpLAqLBtLAuRBy=tsB+sAsu-stsupsB+sAsq-spsq<sy
135 134 anassrs φpLAqLBtLAuRBy=tsB+sAsu-stsupsB+sAsq-spsq<sy
136 135 rexlimdvva φpLAqLBtLAuRBy=tsB+sAsu-stsupsB+sAsq-spsq<sy
137 breq1 x=psB+sAsq-spsqx<sypsB+sAsq-spsq<sy
138 137 imbi2d x=psB+sAsq-spsqtLAuRBy=tsB+sAsu-stsux<sytLAuRBy=tsB+sAsu-stsupsB+sAsq-spsq<sy
139 136 138 syl5ibrcom φpLAqLBx=psB+sAsq-spsqtLAuRBy=tsB+sAsu-stsux<sy
140 139 rexlimdvva φpLAqLBx=psB+sAsq-spsqtLAuRBy=tsB+sAsu-stsux<sy
141 140 impd φpLAqLBx=psB+sAsq-spsqtLAuRBy=tsB+sAsu-stsux<sy
142 1 adantr φpLAqLBvRAwLBaNobNocNodNoeNofNobdaya+bdaybbdayc+bdayebdayd+bdayfbdayc+bdayfbdayd+bdayebdayA+bdayBbdayC+bdayEbdayD+bdayFbdayC+bdayFbdayD+bdayEasbNoc<sde<sfcsf-scse<sdsf-sdse
143 2 adantr φpLAqLBvRAwLBANo
144 3 adantr φpLAqLBvRAwLBBNo
145 simprll φpLAqLBvRAwLBpLA
146 simprlr φpLAqLBvRAwLBqLB
147 simprrl φpLAqLBvRAwLBvRA
148 simprrr φpLAqLBvRAwLBwLB
149 142 143 144 145 146 147 148 mulsproplem6 φpLAqLBvRAwLBpsB+sAsq-spsq<svsB+sAsw-svsw
150 breq2 y=vsB+sAsw-svswpsB+sAsq-spsq<sypsB+sAsq-spsq<svsB+sAsw-svsw
151 149 150 syl5ibrcom φpLAqLBvRAwLBy=vsB+sAsw-svswpsB+sAsq-spsq<sy
152 151 anassrs φpLAqLBvRAwLBy=vsB+sAsw-svswpsB+sAsq-spsq<sy
153 152 rexlimdvva φpLAqLBvRAwLBy=vsB+sAsw-svswpsB+sAsq-spsq<sy
154 137 imbi2d x=psB+sAsq-spsqvRAwLBy=vsB+sAsw-svswx<syvRAwLBy=vsB+sAsw-svswpsB+sAsq-spsq<sy
155 153 154 syl5ibrcom φpLAqLBx=psB+sAsq-spsqvRAwLBy=vsB+sAsw-svswx<sy
156 155 rexlimdvva φpLAqLBx=psB+sAsq-spsqvRAwLBy=vsB+sAsw-svswx<sy
157 156 impd φpLAqLBx=psB+sAsq-spsqvRAwLBy=vsB+sAsw-svswx<sy
158 141 157 jaod φpLAqLBx=psB+sAsq-spsqtLAuRBy=tsB+sAsu-stsupLAqLBx=psB+sAsq-spsqvRAwLBy=vsB+sAsw-svswx<sy
159 1 adantr φrRAsRBtLAuRBaNobNocNodNoeNofNobdaya+bdaybbdayc+bdayebdayd+bdayfbdayc+bdayfbdayd+bdayebdayA+bdayBbdayC+bdayEbdayD+bdayFbdayC+bdayFbdayD+bdayEasbNoc<sde<sfcsf-scse<sdsf-sdse
160 2 adantr φrRAsRBtLAuRBANo
161 3 adantr φrRAsRBtLAuRBBNo
162 simprll φrRAsRBtLAuRBrRA
163 simprlr φrRAsRBtLAuRBsRB
164 simprrl φrRAsRBtLAuRBtLA
165 simprrr φrRAsRBtLAuRBuRB
166 159 160 161 162 163 164 165 mulsproplem7 φrRAsRBtLAuRBrsB+sAss-srss<stsB+sAsu-stsu
167 breq2 y=tsB+sAsu-stsursB+sAss-srss<syrsB+sAss-srss<stsB+sAsu-stsu
168 166 167 syl5ibrcom φrRAsRBtLAuRBy=tsB+sAsu-stsursB+sAss-srss<sy
169 168 anassrs φrRAsRBtLAuRBy=tsB+sAsu-stsursB+sAss-srss<sy
170 169 rexlimdvva φrRAsRBtLAuRBy=tsB+sAsu-stsursB+sAss-srss<sy
171 breq1 x=rsB+sAss-srssx<syrsB+sAss-srss<sy
172 171 imbi2d x=rsB+sAss-srsstLAuRBy=tsB+sAsu-stsux<sytLAuRBy=tsB+sAsu-stsursB+sAss-srss<sy
173 170 172 syl5ibrcom φrRAsRBx=rsB+sAss-srsstLAuRBy=tsB+sAsu-stsux<sy
174 173 rexlimdvva φrRAsRBx=rsB+sAss-srsstLAuRBy=tsB+sAsu-stsux<sy
175 174 impd φrRAsRBx=rsB+sAss-srsstLAuRBy=tsB+sAsu-stsux<sy
176 1 adantr φrRAsRBvRAwLBaNobNocNodNoeNofNobdaya+bdaybbdayc+bdayebdayd+bdayfbdayc+bdayfbdayd+bdayebdayA+bdayBbdayC+bdayEbdayD+bdayFbdayC+bdayFbdayD+bdayEasbNoc<sde<sfcsf-scse<sdsf-sdse
177 2 adantr φrRAsRBvRAwLBANo
178 3 adantr φrRAsRBvRAwLBBNo
179 simprll φrRAsRBvRAwLBrRA
180 simprlr φrRAsRBvRAwLBsRB
181 simprrl φrRAsRBvRAwLBvRA
182 simprrr φrRAsRBvRAwLBwLB
183 176 177 178 179 180 181 182 mulsproplem8 φrRAsRBvRAwLBrsB+sAss-srss<svsB+sAsw-svsw
184 breq2 y=vsB+sAsw-svswrsB+sAss-srss<syrsB+sAss-srss<svsB+sAsw-svsw
185 183 184 syl5ibrcom φrRAsRBvRAwLBy=vsB+sAsw-svswrsB+sAss-srss<sy
186 185 anassrs φrRAsRBvRAwLBy=vsB+sAsw-svswrsB+sAss-srss<sy
187 186 rexlimdvva φrRAsRBvRAwLBy=vsB+sAsw-svswrsB+sAss-srss<sy
188 171 imbi2d x=rsB+sAss-srssvRAwLBy=vsB+sAsw-svswx<syvRAwLBy=vsB+sAsw-svswrsB+sAss-srss<sy
189 187 188 syl5ibrcom φrRAsRBx=rsB+sAss-srssvRAwLBy=vsB+sAsw-svswx<sy
190 189 rexlimdvva φrRAsRBx=rsB+sAss-srssvRAwLBy=vsB+sAsw-svswx<sy
191 190 impd φrRAsRBx=rsB+sAss-srssvRAwLBy=vsB+sAsw-svswx<sy
192 175 191 jaod φrRAsRBx=rsB+sAss-srsstLAuRBy=tsB+sAsu-stsurRAsRBx=rsB+sAss-srssvRAwLBy=vsB+sAsw-svswx<sy
193 158 192 jaod φpLAqLBx=psB+sAsq-spsqtLAuRBy=tsB+sAsu-stsupLAqLBx=psB+sAsq-spsqvRAwLBy=vsB+sAsw-svswrRAsRBx=rsB+sAss-srsstLAuRBy=tsB+sAsu-stsurRAsRBx=rsB+sAss-srssvRAwLBy=vsB+sAsw-svswx<sy
194 124 193 biimtrid φxg|pLAqLBg=psB+sAsq-spsqh|rRAsRBh=rsB+sAss-srssyi|tLAuRBi=tsB+sAsu-stsuj|vRAwLBj=vsB+sAsw-svswx<sy
195 194 3impib φxg|pLAqLBg=psB+sAsq-spsqh|rRAsRBh=rsB+sAss-srssyi|tLAuRBi=tsB+sAsu-stsuj|vRAwLBj=vsB+sAsw-svswx<sy
196 19 31 68 101 195 ssltd φg|pLAqLBg=psB+sAsq-spsqh|rRAsRBh=rsB+sAss-srsssi|tLAuRBi=tsB+sAsu-stsuj|vRAwLBj=vsB+sAsw-svsw