Metamath Proof Explorer


Theorem mulsproplem9

Description: Lemma for surreal multiplication. Show that the cut involved in surreal multiplication makes sense. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypotheses mulsproplem.1 φ a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
mulsproplem9.1 φ A No
mulsproplem9.2 φ B No
Assertion mulsproplem9 φ g | p L A q L B g = p s B + s A s q - s p s q h | r R A s R B h = r s B + s A s s - s r s s s i | t L A u R B i = t s B + s A s u - s t s u j | v R A w L B j = v s B + s A s w - s v s w

Proof

Step Hyp Ref Expression
1 mulsproplem.1 φ a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
2 mulsproplem9.1 φ A No
3 mulsproplem9.2 φ B No
4 eqid p L A , q L B p s B + s A s q - s p s q = p L A , q L B p s B + s A s q - s p s q
5 4 rnmpo ran p L A , q L B p s B + s A s q - s p s q = g | p L A q L B g = p s B + s A s q - s p s q
6 fvex L A V
7 fvex L B V
8 6 7 mpoex p L A , q L B p s B + s A s q - s p s q V
9 8 rnex ran p L A , q L B p s B + s A s q - s p s q V
10 5 9 eqeltrri g | p L A q L B g = p s B + s A s q - s p s q V
11 eqid r R A , s R B r s B + s A s s - s r s s = r R A , s R B r s B + s A s s - s r s s
12 11 rnmpo ran r R A , s R B r s B + s A s s - s r s s = h | r R A s R B h = r s B + s A s s - s r s s
13 fvex R A V
14 fvex R B V
15 13 14 mpoex r R A , s R B r s B + s A s s - s r s s V
16 15 rnex ran r R A , s R B r s B + s A s s - s r s s V
17 12 16 eqeltrri h | r R A s R B h = r s B + s A s s - s r s s V
18 10 17 unex g | p L A q L B g = p s B + s A s q - s p s q h | r R A s R B h = r s B + s A s s - s r s s V
19 18 a1i φ g | p L A q L B g = p s B + s A s q - s p s q h | r R A s R B h = r s B + s A s s - s r s s V
20 eqid t L A , u R B t s B + s A s u - s t s u = t L A , u R B t s B + s A s u - s t s u
21 20 rnmpo ran t L A , u R B t s B + s A s u - s t s u = i | t L A u R B i = t s B + s A s u - s t s u
22 6 14 mpoex t L A , u R B t s B + s A s u - s t s u V
23 22 rnex ran t L A , u R B t s B + s A s u - s t s u V
24 21 23 eqeltrri i | t L A u R B i = t s B + s A s u - s t s u V
25 eqid v R A , w L B v s B + s A s w - s v s w = v R A , w L B v s B + s A s w - s v s w
26 25 rnmpo ran v R A , w L B v s B + s A s w - s v s w = j | v R A w L B j = v s B + s A s w - s v s w
27 13 7 mpoex v R A , w L B v s B + s A s w - s v s w V
28 27 rnex ran v R A , w L B v s B + s A s w - s v s w V
29 26 28 eqeltrri j | v R A w L B j = v s B + s A s w - s v s w V
30 24 29 unex i | t L A u R B i = t s B + s A s u - s t s u j | v R A w L B j = v s B + s A s w - s v s w V
31 30 a1i φ i | t L A u R B i = t s B + s A s u - s t s u j | v R A w L B j = v s B + s A s w - s v s w V
32 1 adantr φ p L A q L B a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
33 leftssold L A Old bday A
34 simprl φ p L A q L B p L A
35 33 34 sselid φ p L A q L B p Old bday A
36 3 adantr φ p L A q L B B No
37 32 35 36 mulsproplem2 φ p L A q L B p s B No
38 2 adantr φ p L A q L B A No
39 leftssold L B Old bday B
40 simprr φ p L A q L B q L B
41 39 40 sselid φ p L A q L B q Old bday B
42 32 38 41 mulsproplem3 φ p L A q L B A s q No
43 37 42 addscld φ p L A q L B p s B + s A s q No
44 32 35 41 mulsproplem4 φ p L A q L B p s q No
45 43 44 subscld φ p L A q L B p s B + s A s q - s p s q No
46 eleq1 g = p s B + s A s q - s p s q g No p s B + s A s q - s p s q No
47 45 46 syl5ibrcom φ p L A q L B g = p s B + s A s q - s p s q g No
48 47 rexlimdvva φ p L A q L B g = p s B + s A s q - s p s q g No
49 48 abssdv φ g | p L A q L B g = p s B + s A s q - s p s q No
50 1 adantr φ r R A s R B a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
51 rightssold R A Old bday A
52 simprl φ r R A s R B r R A
53 51 52 sselid φ r R A s R B r Old bday A
54 3 adantr φ r R A s R B B No
55 50 53 54 mulsproplem2 φ r R A s R B r s B No
56 2 adantr φ r R A s R B A No
57 rightssold R B Old bday B
58 simprr φ r R A s R B s R B
59 57 58 sselid φ r R A s R B s Old bday B
60 50 56 59 mulsproplem3 φ r R A s R B A s s No
61 55 60 addscld φ r R A s R B r s B + s A s s No
62 50 53 59 mulsproplem4 φ r R A s R B r s s No
63 61 62 subscld φ r R A s R B r s B + s A s s - s r s s No
64 eleq1 h = r s B + s A s s - s r s s h No r s B + s A s s - s r s s No
65 63 64 syl5ibrcom φ r R A s R B h = r s B + s A s s - s r s s h No
66 65 rexlimdvva φ r R A s R B h = r s B + s A s s - s r s s h No
67 66 abssdv φ h | r R A s R B h = r s B + s A s s - s r s s No
68 49 67 unssd φ g | p L A q L B g = p s B + s A s q - s p s q h | r R A s R B h = r s B + s A s s - s r s s No
69 1 adantr φ t L A u R B a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
70 simprl φ t L A u R B t L A
71 33 70 sselid φ t L A u R B t Old bday A
72 3 adantr φ t L A u R B B No
73 69 71 72 mulsproplem2 φ t L A u R B t s B No
74 2 adantr φ t L A u R B A No
75 simprr φ t L A u R B u R B
76 57 75 sselid φ t L A u R B u Old bday B
77 69 74 76 mulsproplem3 φ t L A u R B A s u No
78 73 77 addscld φ t L A u R B t s B + s A s u No
79 69 71 76 mulsproplem4 φ t L A u R B t s u No
80 78 79 subscld φ t L A u R B t s B + s A s u - s t s u No
81 eleq1 i = t s B + s A s u - s t s u i No t s B + s A s u - s t s u No
82 80 81 syl5ibrcom φ t L A u R B i = t s B + s A s u - s t s u i No
83 82 rexlimdvva φ t L A u R B i = t s B + s A s u - s t s u i No
84 83 abssdv φ i | t L A u R B i = t s B + s A s u - s t s u No
85 1 adantr φ v R A w L B a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
86 simprl φ v R A w L B v R A
87 51 86 sselid φ v R A w L B v Old bday A
88 3 adantr φ v R A w L B B No
89 85 87 88 mulsproplem2 φ v R A w L B v s B No
90 2 adantr φ v R A w L B A No
91 simprr φ v R A w L B w L B
92 39 91 sselid φ v R A w L B w Old bday B
93 85 90 92 mulsproplem3 φ v R A w L B A s w No
94 89 93 addscld φ v R A w L B v s B + s A s w No
95 85 87 92 mulsproplem4 φ v R A w L B v s w No
96 94 95 subscld φ v R A w L B v s B + s A s w - s v s w No
97 eleq1 j = v s B + s A s w - s v s w j No v s B + s A s w - s v s w No
98 96 97 syl5ibrcom φ v R A w L B j = v s B + s A s w - s v s w j No
99 98 rexlimdvva φ v R A w L B j = v s B + s A s w - s v s w j No
100 99 abssdv φ j | v R A w L B j = v s B + s A s w - s v s w No
101 84 100 unssd φ i | t L A u R B i = t s B + s A s u - s t s u j | v R A w L B j = v s B + s A s w - s v s w No
102 elun x g | p L A q L B g = p s B + s A s q - s p s q h | r R A s R B h = r s B + s A s s - s r s s x g | p L A q L B g = p s B + s A s q - s p s q x h | r R A s R B h = r s B + s A s s - s r s s
103 vex x V
104 eqeq1 g = x g = p s B + s A s q - s p s q x = p s B + s A s q - s p s q
105 104 2rexbidv g = x p L A q L B g = p s B + s A s q - s p s q p L A q L B x = p s B + s A s q - s p s q
106 103 105 elab x g | p L A q L B g = p s B + s A s q - s p s q p L A q L B x = p s B + s A s q - s p s q
107 eqeq1 h = x h = r s B + s A s s - s r s s x = r s B + s A s s - s r s s
108 107 2rexbidv h = x r R A s R B h = r s B + s A s s - s r s s r R A s R B x = r s B + s A s s - s r s s
109 103 108 elab x h | r R A s R B h = r s B + s A s s - s r s s r R A s R B x = r s B + s A s s - s r s s
110 106 109 orbi12i x g | p L A q L B g = p s B + s A s q - s p s q x h | r R A s R B h = r s B + s A s s - s r s s p L A q L B x = p s B + s A s q - s p s q r R A s R B x = r s B + s A s s - s r s s
111 102 110 bitri x g | p L A q L B g = p s B + s A s q - s p s q h | r R A s R B h = r s B + s A s s - s r s s p L A q L B x = p s B + s A s q - s p s q r R A s R B x = r s B + s A s s - s r s s
112 elun y i | t L A u R B i = t s B + s A s u - s t s u j | v R A w L B j = v s B + s A s w - s v s w y i | t L A u R B i = t s B + s A s u - s t s u y j | v R A w L B j = v s B + s A s w - s v s w
113 vex y V
114 eqeq1 i = y i = t s B + s A s u - s t s u y = t s B + s A s u - s t s u
115 114 2rexbidv i = y t L A u R B i = t s B + s A s u - s t s u t L A u R B y = t s B + s A s u - s t s u
116 113 115 elab y i | t L A u R B i = t s B + s A s u - s t s u t L A u R B y = t s B + s A s u - s t s u
117 eqeq1 j = y j = v s B + s A s w - s v s w y = v s B + s A s w - s v s w
118 117 2rexbidv j = y v R A w L B j = v s B + s A s w - s v s w v R A w L B y = v s B + s A s w - s v s w
119 113 118 elab y j | v R A w L B j = v s B + s A s w - s v s w v R A w L B y = v s B + s A s w - s v s w
120 116 119 orbi12i y i | t L A u R B i = t s B + s A s u - s t s u y j | v R A w L B j = v s B + s A s w - s v s w t L A u R B y = t s B + s A s u - s t s u v R A w L B y = v s B + s A s w - s v s w
121 112 120 bitri y i | t L A u R B i = t s B + s A s u - s t s u j | v R A w L B j = v s B + s A s w - s v s w t L A u R B y = t s B + s A s u - s t s u v R A w L B y = v s B + s A s w - s v s w
122 111 121 anbi12i x g | p L A q L B g = p s B + s A s q - s p s q h | r R A s R B h = r s B + s A s s - s r s s y i | t L A u R B i = t s B + s A s u - s t s u j | v R A w L B j = v s B + s A s w - s v s w p L A q L B x = p s B + s A s q - s p s q r R A s R B x = r s B + s A s s - s r s s t L A u R B y = t s B + s A s u - s t s u v R A w L B y = v s B + s A s w - s v s w
123 anddi p L A q L B x = p s B + s A s q - s p s q r R A s R B x = r s B + s A s s - s r s s t L A u R B y = t s B + s A s u - s t s u v R A w L B y = v s B + s A s w - s v s w p L A q L B x = p s B + s A s q - s p s q t L A u R B y = t s B + s A s u - s t s u p L A q L B x = p s B + s A s q - s p s q v R A w L B y = v s B + s A s w - s v s w r R A s R B x = r s B + s A s s - s r s s t L A u R B y = t s B + s A s u - s t s u r R A s R B x = r s B + s A s s - s r s s v R A w L B y = v s B + s A s w - s v s w
124 122 123 bitri x g | p L A q L B g = p s B + s A s q - s p s q h | r R A s R B h = r s B + s A s s - s r s s y i | t L A u R B i = t s B + s A s u - s t s u j | v R A w L B j = v s B + s A s w - s v s w p L A q L B x = p s B + s A s q - s p s q t L A u R B y = t s B + s A s u - s t s u p L A q L B x = p s B + s A s q - s p s q v R A w L B y = v s B + s A s w - s v s w r R A s R B x = r s B + s A s s - s r s s t L A u R B y = t s B + s A s u - s t s u r R A s R B x = r s B + s A s s - s r s s v R A w L B y = v s B + s A s w - s v s w
125 1 adantr φ p L A q L B t L A u R B a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
126 2 adantr φ p L A q L B t L A u R B A No
127 3 adantr φ p L A q L B t L A u R B B No
128 simprll φ p L A q L B t L A u R B p L A
129 simprlr φ p L A q L B t L A u R B q L B
130 simprrl φ p L A q L B t L A u R B t L A
131 simprrr φ p L A q L B t L A u R B u R B
132 125 126 127 128 129 130 131 mulsproplem5 φ p L A q L B t L A u R B p s B + s A s q - s p s q < s t s B + s A s u - s t s u
133 breq2 y = t s B + s A s u - s t s u p s B + s A s q - s p s q < s y p s B + s A s q - s p s q < s t s B + s A s u - s t s u
134 132 133 syl5ibrcom φ p L A q L B t L A u R B y = t s B + s A s u - s t s u p s B + s A s q - s p s q < s y
135 134 anassrs φ p L A q L B t L A u R B y = t s B + s A s u - s t s u p s B + s A s q - s p s q < s y
136 135 rexlimdvva φ p L A q L B t L A u R B y = t s B + s A s u - s t s u p s B + s A s q - s p s q < s y
137 breq1 x = p s B + s A s q - s p s q x < s y p s B + s A s q - s p s q < s y
138 137 imbi2d x = p s B + s A s q - s p s q t L A u R B y = t s B + s A s u - s t s u x < s y t L A u R B y = t s B + s A s u - s t s u p s B + s A s q - s p s q < s y
139 136 138 syl5ibrcom φ p L A q L B x = p s B + s A s q - s p s q t L A u R B y = t s B + s A s u - s t s u x < s y
140 139 rexlimdvva φ p L A q L B x = p s B + s A s q - s p s q t L A u R B y = t s B + s A s u - s t s u x < s y
141 140 impd φ p L A q L B x = p s B + s A s q - s p s q t L A u R B y = t s B + s A s u - s t s u x < s y
142 1 adantr φ p L A q L B v R A w L B a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
143 2 adantr φ p L A q L B v R A w L B A No
144 3 adantr φ p L A q L B v R A w L B B No
145 simprll φ p L A q L B v R A w L B p L A
146 simprlr φ p L A q L B v R A w L B q L B
147 simprrl φ p L A q L B v R A w L B v R A
148 simprrr φ p L A q L B v R A w L B w L B
149 142 143 144 145 146 147 148 mulsproplem6 φ p L A q L B v R A w L B p s B + s A s q - s p s q < s v s B + s A s w - s v s w
150 breq2 y = v s B + s A s w - s v s w p s B + s A s q - s p s q < s y p s B + s A s q - s p s q < s v s B + s A s w - s v s w
151 149 150 syl5ibrcom φ p L A q L B v R A w L B y = v s B + s A s w - s v s w p s B + s A s q - s p s q < s y
152 151 anassrs φ p L A q L B v R A w L B y = v s B + s A s w - s v s w p s B + s A s q - s p s q < s y
153 152 rexlimdvva φ p L A q L B v R A w L B y = v s B + s A s w - s v s w p s B + s A s q - s p s q < s y
154 137 imbi2d x = p s B + s A s q - s p s q v R A w L B y = v s B + s A s w - s v s w x < s y v R A w L B y = v s B + s A s w - s v s w p s B + s A s q - s p s q < s y
155 153 154 syl5ibrcom φ p L A q L B x = p s B + s A s q - s p s q v R A w L B y = v s B + s A s w - s v s w x < s y
156 155 rexlimdvva φ p L A q L B x = p s B + s A s q - s p s q v R A w L B y = v s B + s A s w - s v s w x < s y
157 156 impd φ p L A q L B x = p s B + s A s q - s p s q v R A w L B y = v s B + s A s w - s v s w x < s y
158 141 157 jaod φ p L A q L B x = p s B + s A s q - s p s q t L A u R B y = t s B + s A s u - s t s u p L A q L B x = p s B + s A s q - s p s q v R A w L B y = v s B + s A s w - s v s w x < s y
159 1 adantr φ r R A s R B t L A u R B a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
160 2 adantr φ r R A s R B t L A u R B A No
161 3 adantr φ r R A s R B t L A u R B B No
162 simprll φ r R A s R B t L A u R B r R A
163 simprlr φ r R A s R B t L A u R B s R B
164 simprrl φ r R A s R B t L A u R B t L A
165 simprrr φ r R A s R B t L A u R B u R B
166 159 160 161 162 163 164 165 mulsproplem7 φ r R A s R B t L A u R B r s B + s A s s - s r s s < s t s B + s A s u - s t s u
167 breq2 y = t s B + s A s u - s t s u r s B + s A s s - s r s s < s y r s B + s A s s - s r s s < s t s B + s A s u - s t s u
168 166 167 syl5ibrcom φ r R A s R B t L A u R B y = t s B + s A s u - s t s u r s B + s A s s - s r s s < s y
169 168 anassrs φ r R A s R B t L A u R B y = t s B + s A s u - s t s u r s B + s A s s - s r s s < s y
170 169 rexlimdvva φ r R A s R B t L A u R B y = t s B + s A s u - s t s u r s B + s A s s - s r s s < s y
171 breq1 x = r s B + s A s s - s r s s x < s y r s B + s A s s - s r s s < s y
172 171 imbi2d x = r s B + s A s s - s r s s t L A u R B y = t s B + s A s u - s t s u x < s y t L A u R B y = t s B + s A s u - s t s u r s B + s A s s - s r s s < s y
173 170 172 syl5ibrcom φ r R A s R B x = r s B + s A s s - s r s s t L A u R B y = t s B + s A s u - s t s u x < s y
174 173 rexlimdvva φ r R A s R B x = r s B + s A s s - s r s s t L A u R B y = t s B + s A s u - s t s u x < s y
175 174 impd φ r R A s R B x = r s B + s A s s - s r s s t L A u R B y = t s B + s A s u - s t s u x < s y
176 1 adantr φ r R A s R B v R A w L B a No b No c No d No e No f No bday a + bday b bday c + bday e bday d + bday f bday c + bday f bday d + bday e bday A + bday B bday C + bday E bday D + bday F bday C + bday F bday D + bday E a s b No c < s d e < s f c s f - s c s e < s d s f - s d s e
177 2 adantr φ r R A s R B v R A w L B A No
178 3 adantr φ r R A s R B v R A w L B B No
179 simprll φ r R A s R B v R A w L B r R A
180 simprlr φ r R A s R B v R A w L B s R B
181 simprrl φ r R A s R B v R A w L B v R A
182 simprrr φ r R A s R B v R A w L B w L B
183 176 177 178 179 180 181 182 mulsproplem8 φ r R A s R B v R A w L B r s B + s A s s - s r s s < s v s B + s A s w - s v s w
184 breq2 y = v s B + s A s w - s v s w r s B + s A s s - s r s s < s y r s B + s A s s - s r s s < s v s B + s A s w - s v s w
185 183 184 syl5ibrcom φ r R A s R B v R A w L B y = v s B + s A s w - s v s w r s B + s A s s - s r s s < s y
186 185 anassrs φ r R A s R B v R A w L B y = v s B + s A s w - s v s w r s B + s A s s - s r s s < s y
187 186 rexlimdvva φ r R A s R B v R A w L B y = v s B + s A s w - s v s w r s B + s A s s - s r s s < s y
188 171 imbi2d x = r s B + s A s s - s r s s v R A w L B y = v s B + s A s w - s v s w x < s y v R A w L B y = v s B + s A s w - s v s w r s B + s A s s - s r s s < s y
189 187 188 syl5ibrcom φ r R A s R B x = r s B + s A s s - s r s s v R A w L B y = v s B + s A s w - s v s w x < s y
190 189 rexlimdvva φ r R A s R B x = r s B + s A s s - s r s s v R A w L B y = v s B + s A s w - s v s w x < s y
191 190 impd φ r R A s R B x = r s B + s A s s - s r s s v R A w L B y = v s B + s A s w - s v s w x < s y
192 175 191 jaod φ r R A s R B x = r s B + s A s s - s r s s t L A u R B y = t s B + s A s u - s t s u r R A s R B x = r s B + s A s s - s r s s v R A w L B y = v s B + s A s w - s v s w x < s y
193 158 192 jaod φ p L A q L B x = p s B + s A s q - s p s q t L A u R B y = t s B + s A s u - s t s u p L A q L B x = p s B + s A s q - s p s q v R A w L B y = v s B + s A s w - s v s w r R A s R B x = r s B + s A s s - s r s s t L A u R B y = t s B + s A s u - s t s u r R A s R B x = r s B + s A s s - s r s s v R A w L B y = v s B + s A s w - s v s w x < s y
194 124 193 biimtrid φ x g | p L A q L B g = p s B + s A s q - s p s q h | r R A s R B h = r s B + s A s s - s r s s y i | t L A u R B i = t s B + s A s u - s t s u j | v R A w L B j = v s B + s A s w - s v s w x < s y
195 194 3impib φ x g | p L A q L B g = p s B + s A s q - s p s q h | r R A s R B h = r s B + s A s s - s r s s y i | t L A u R B i = t s B + s A s u - s t s u j | v R A w L B j = v s B + s A s w - s v s w x < s y
196 19 31 68 101 195 ssltd φ g | p L A q L B g = p s B + s A s q - s p s q h | r R A s R B h = r s B + s A s s - s r s s s i | t L A u R B i = t s B + s A s u - s t s u j | v R A w L B j = v s B + s A s w - s v s w