Step |
Hyp |
Ref |
Expression |
1 |
|
mulsproplem.1 |
|
2 |
|
mulsproplem9.1 |
|
3 |
|
mulsproplem9.2 |
|
4 |
|
eqid |
|
5 |
4
|
rnmpo |
|
6 |
|
fvex |
|
7 |
|
fvex |
|
8 |
6 7
|
mpoex |
|
9 |
8
|
rnex |
|
10 |
5 9
|
eqeltrri |
|
11 |
|
eqid |
|
12 |
11
|
rnmpo |
|
13 |
|
fvex |
|
14 |
|
fvex |
|
15 |
13 14
|
mpoex |
|
16 |
15
|
rnex |
|
17 |
12 16
|
eqeltrri |
|
18 |
10 17
|
unex |
|
19 |
18
|
a1i |
|
20 |
|
eqid |
|
21 |
20
|
rnmpo |
|
22 |
6 14
|
mpoex |
|
23 |
22
|
rnex |
|
24 |
21 23
|
eqeltrri |
|
25 |
|
eqid |
|
26 |
25
|
rnmpo |
|
27 |
13 7
|
mpoex |
|
28 |
27
|
rnex |
|
29 |
26 28
|
eqeltrri |
|
30 |
24 29
|
unex |
|
31 |
30
|
a1i |
|
32 |
1
|
adantr |
|
33 |
|
leftssold |
|
34 |
|
simprl |
|
35 |
33 34
|
sselid |
|
36 |
3
|
adantr |
|
37 |
32 35 36
|
mulsproplem2 |
|
38 |
2
|
adantr |
|
39 |
|
leftssold |
|
40 |
|
simprr |
|
41 |
39 40
|
sselid |
|
42 |
32 38 41
|
mulsproplem3 |
|
43 |
37 42
|
addscld |
|
44 |
32 35 41
|
mulsproplem4 |
|
45 |
43 44
|
subscld |
|
46 |
|
eleq1 |
|
47 |
45 46
|
syl5ibrcom |
|
48 |
47
|
rexlimdvva |
|
49 |
48
|
abssdv |
|
50 |
1
|
adantr |
|
51 |
|
rightssold |
|
52 |
|
simprl |
|
53 |
51 52
|
sselid |
|
54 |
3
|
adantr |
|
55 |
50 53 54
|
mulsproplem2 |
|
56 |
2
|
adantr |
|
57 |
|
rightssold |
|
58 |
|
simprr |
|
59 |
57 58
|
sselid |
|
60 |
50 56 59
|
mulsproplem3 |
|
61 |
55 60
|
addscld |
|
62 |
50 53 59
|
mulsproplem4 |
|
63 |
61 62
|
subscld |
|
64 |
|
eleq1 |
|
65 |
63 64
|
syl5ibrcom |
|
66 |
65
|
rexlimdvva |
|
67 |
66
|
abssdv |
|
68 |
49 67
|
unssd |
|
69 |
1
|
adantr |
|
70 |
|
simprl |
|
71 |
33 70
|
sselid |
|
72 |
3
|
adantr |
|
73 |
69 71 72
|
mulsproplem2 |
|
74 |
2
|
adantr |
|
75 |
|
simprr |
|
76 |
57 75
|
sselid |
|
77 |
69 74 76
|
mulsproplem3 |
|
78 |
73 77
|
addscld |
|
79 |
69 71 76
|
mulsproplem4 |
|
80 |
78 79
|
subscld |
|
81 |
|
eleq1 |
|
82 |
80 81
|
syl5ibrcom |
|
83 |
82
|
rexlimdvva |
|
84 |
83
|
abssdv |
|
85 |
1
|
adantr |
|
86 |
|
simprl |
|
87 |
51 86
|
sselid |
|
88 |
3
|
adantr |
|
89 |
85 87 88
|
mulsproplem2 |
|
90 |
2
|
adantr |
|
91 |
|
simprr |
|
92 |
39 91
|
sselid |
|
93 |
85 90 92
|
mulsproplem3 |
|
94 |
89 93
|
addscld |
|
95 |
85 87 92
|
mulsproplem4 |
|
96 |
94 95
|
subscld |
|
97 |
|
eleq1 |
|
98 |
96 97
|
syl5ibrcom |
|
99 |
98
|
rexlimdvva |
|
100 |
99
|
abssdv |
|
101 |
84 100
|
unssd |
|
102 |
|
elun |
|
103 |
|
vex |
|
104 |
|
eqeq1 |
|
105 |
104
|
2rexbidv |
|
106 |
103 105
|
elab |
|
107 |
|
eqeq1 |
|
108 |
107
|
2rexbidv |
|
109 |
103 108
|
elab |
|
110 |
106 109
|
orbi12i |
|
111 |
102 110
|
bitri |
|
112 |
|
elun |
|
113 |
|
vex |
|
114 |
|
eqeq1 |
|
115 |
114
|
2rexbidv |
|
116 |
113 115
|
elab |
|
117 |
|
eqeq1 |
|
118 |
117
|
2rexbidv |
|
119 |
113 118
|
elab |
|
120 |
116 119
|
orbi12i |
|
121 |
112 120
|
bitri |
|
122 |
111 121
|
anbi12i |
|
123 |
|
anddi |
|
124 |
122 123
|
bitri |
|
125 |
1
|
adantr |
|
126 |
2
|
adantr |
|
127 |
3
|
adantr |
|
128 |
|
simprll |
|
129 |
|
simprlr |
|
130 |
|
simprrl |
|
131 |
|
simprrr |
|
132 |
125 126 127 128 129 130 131
|
mulsproplem5 |
|
133 |
|
breq2 |
|
134 |
132 133
|
syl5ibrcom |
|
135 |
134
|
anassrs |
|
136 |
135
|
rexlimdvva |
|
137 |
|
breq1 |
|
138 |
137
|
imbi2d |
|
139 |
136 138
|
syl5ibrcom |
|
140 |
139
|
rexlimdvva |
|
141 |
140
|
impd |
|
142 |
1
|
adantr |
|
143 |
2
|
adantr |
|
144 |
3
|
adantr |
|
145 |
|
simprll |
|
146 |
|
simprlr |
|
147 |
|
simprrl |
|
148 |
|
simprrr |
|
149 |
142 143 144 145 146 147 148
|
mulsproplem6 |
|
150 |
|
breq2 |
|
151 |
149 150
|
syl5ibrcom |
|
152 |
151
|
anassrs |
|
153 |
152
|
rexlimdvva |
|
154 |
137
|
imbi2d |
|
155 |
153 154
|
syl5ibrcom |
|
156 |
155
|
rexlimdvva |
|
157 |
156
|
impd |
|
158 |
141 157
|
jaod |
|
159 |
1
|
adantr |
|
160 |
2
|
adantr |
|
161 |
3
|
adantr |
|
162 |
|
simprll |
|
163 |
|
simprlr |
|
164 |
|
simprrl |
|
165 |
|
simprrr |
|
166 |
159 160 161 162 163 164 165
|
mulsproplem7 |
|
167 |
|
breq2 |
|
168 |
166 167
|
syl5ibrcom |
|
169 |
168
|
anassrs |
|
170 |
169
|
rexlimdvva |
|
171 |
|
breq1 |
|
172 |
171
|
imbi2d |
|
173 |
170 172
|
syl5ibrcom |
|
174 |
173
|
rexlimdvva |
|
175 |
174
|
impd |
|
176 |
1
|
adantr |
|
177 |
2
|
adantr |
|
178 |
3
|
adantr |
|
179 |
|
simprll |
|
180 |
|
simprlr |
|
181 |
|
simprrl |
|
182 |
|
simprrr |
|
183 |
176 177 178 179 180 181 182
|
mulsproplem8 |
|
184 |
|
breq2 |
|
185 |
183 184
|
syl5ibrcom |
|
186 |
185
|
anassrs |
|
187 |
186
|
rexlimdvva |
|
188 |
171
|
imbi2d |
|
189 |
187 188
|
syl5ibrcom |
|
190 |
189
|
rexlimdvva |
|
191 |
190
|
impd |
|
192 |
175 191
|
jaod |
|
193 |
158 192
|
jaod |
|
194 |
124 193
|
biimtrid |
|
195 |
194
|
3impib |
|
196 |
19 31 68 101 195
|
ssltd |
|