Step |
Hyp |
Ref |
Expression |
1 |
|
mulsproplem.1 |
|
2 |
|
fveq2 |
|
3 |
2
|
oveq1d |
|
4 |
3
|
uneq1d |
|
5 |
4
|
eleq1d |
|
6 |
|
oveq1 |
|
7 |
6
|
eleq1d |
|
8 |
7
|
anbi1d |
|
9 |
5 8
|
imbi12d |
|
10 |
|
fveq2 |
|
11 |
10
|
oveq2d |
|
12 |
11
|
uneq1d |
|
13 |
12
|
eleq1d |
|
14 |
|
oveq2 |
|
15 |
14
|
eleq1d |
|
16 |
15
|
anbi1d |
|
17 |
13 16
|
imbi12d |
|
18 |
|
fveq2 |
|
19 |
18
|
oveq1d |
|
20 |
19
|
uneq1d |
|
21 |
18
|
oveq1d |
|
22 |
21
|
uneq1d |
|
23 |
20 22
|
uneq12d |
|
24 |
23
|
uneq2d |
|
25 |
24
|
eleq1d |
|
26 |
|
breq1 |
|
27 |
26
|
anbi1d |
|
28 |
|
oveq1 |
|
29 |
|
oveq1 |
|
30 |
28 29
|
oveq12d |
|
31 |
30
|
breq1d |
|
32 |
27 31
|
imbi12d |
|
33 |
32
|
anbi2d |
|
34 |
25 33
|
imbi12d |
|
35 |
|
fveq2 |
|
36 |
35
|
oveq1d |
|
37 |
36
|
uneq2d |
|
38 |
35
|
oveq1d |
|
39 |
38
|
uneq2d |
|
40 |
37 39
|
uneq12d |
|
41 |
40
|
uneq2d |
|
42 |
41
|
eleq1d |
|
43 |
|
breq2 |
|
44 |
43
|
anbi1d |
|
45 |
|
oveq1 |
|
46 |
|
oveq1 |
|
47 |
45 46
|
oveq12d |
|
48 |
47
|
breq2d |
|
49 |
44 48
|
imbi12d |
|
50 |
49
|
anbi2d |
|
51 |
42 50
|
imbi12d |
|
52 |
|
fveq2 |
|
53 |
52
|
oveq2d |
|
54 |
53
|
uneq1d |
|
55 |
52
|
oveq2d |
|
56 |
55
|
uneq2d |
|
57 |
54 56
|
uneq12d |
|
58 |
57
|
uneq2d |
|
59 |
58
|
eleq1d |
|
60 |
|
breq1 |
|
61 |
60
|
anbi2d |
|
62 |
|
oveq2 |
|
63 |
62
|
oveq2d |
|
64 |
|
oveq2 |
|
65 |
64
|
oveq2d |
|
66 |
63 65
|
breq12d |
|
67 |
61 66
|
imbi12d |
|
68 |
67
|
anbi2d |
|
69 |
59 68
|
imbi12d |
|
70 |
|
fveq2 |
|
71 |
70
|
oveq2d |
|
72 |
71
|
uneq2d |
|
73 |
70
|
oveq2d |
|
74 |
73
|
uneq1d |
|
75 |
72 74
|
uneq12d |
|
76 |
75
|
uneq2d |
|
77 |
76
|
eleq1d |
|
78 |
|
breq2 |
|
79 |
78
|
anbi2d |
|
80 |
|
oveq2 |
|
81 |
80
|
oveq1d |
|
82 |
|
oveq2 |
|
83 |
82
|
oveq1d |
|
84 |
81 83
|
breq12d |
|
85 |
79 84
|
imbi12d |
|
86 |
85
|
anbi2d |
|
87 |
77 86
|
imbi12d |
|
88 |
9 17 34 51 69 87
|
cbvral6vw |
|
89 |
1 88
|
sylib |
|