Step |
Hyp |
Ref |
Expression |
1 |
|
enrer |
|
2 |
1
|
a1i |
|
3 |
|
prsrlem1 |
|
4 |
|
mulcmpblnr |
|
5 |
4
|
imp |
|
6 |
3 5
|
syl |
|
7 |
2 6
|
erthi |
|
8 |
7
|
adantrlr |
|
9 |
8
|
adantrrr |
|
10 |
|
simprlr |
|
11 |
|
simprrr |
|
12 |
9 10 11
|
3eqtr4d |
|
13 |
12
|
expr |
|
14 |
13
|
exlimdvv |
|
15 |
14
|
exlimdvv |
|
16 |
15
|
ex |
|
17 |
16
|
exlimdvv |
|
18 |
17
|
exlimdvv |
|
19 |
18
|
impd |
|
20 |
19
|
alrimivv |
|
21 |
|
opeq12 |
|
22 |
21
|
eceq1d |
|
23 |
22
|
eqeq2d |
|
24 |
23
|
anbi1d |
|
25 |
|
simpl |
|
26 |
25
|
oveq1d |
|
27 |
|
simpr |
|
28 |
27
|
oveq1d |
|
29 |
26 28
|
oveq12d |
|
30 |
25
|
oveq1d |
|
31 |
27
|
oveq1d |
|
32 |
30 31
|
oveq12d |
|
33 |
29 32
|
opeq12d |
|
34 |
33
|
eceq1d |
|
35 |
34
|
eqeq2d |
|
36 |
24 35
|
anbi12d |
|
37 |
|
opeq12 |
|
38 |
37
|
eceq1d |
|
39 |
38
|
eqeq2d |
|
40 |
39
|
anbi2d |
|
41 |
|
simpl |
|
42 |
41
|
oveq2d |
|
43 |
|
simpr |
|
44 |
43
|
oveq2d |
|
45 |
42 44
|
oveq12d |
|
46 |
43
|
oveq2d |
|
47 |
41
|
oveq2d |
|
48 |
46 47
|
oveq12d |
|
49 |
45 48
|
opeq12d |
|
50 |
49
|
eceq1d |
|
51 |
50
|
eqeq2d |
|
52 |
40 51
|
anbi12d |
|
53 |
36 52
|
cbvex4vw |
|
54 |
53
|
anbi2i |
|
55 |
54
|
imbi1i |
|
56 |
55
|
2albii |
|
57 |
20 56
|
sylibr |
|
58 |
|
eqeq1 |
|
59 |
58
|
anbi2d |
|
60 |
59
|
4exbidv |
|
61 |
60
|
mo4 |
|
62 |
57 61
|
sylibr |
|