Metamath Proof Explorer


Theorem mulsrpr

Description: Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)

Ref Expression
Assertion mulsrpr A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 𝑹 C D ~ 𝑹 = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹

Proof

Step Hyp Ref Expression
1 opelxpi A 𝑷 B 𝑷 A B 𝑷 × 𝑷
2 enrex ~ 𝑹 V
3 2 ecelqsi A B 𝑷 × 𝑷 A B ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
4 1 3 syl A 𝑷 B 𝑷 A B ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
5 opelxpi C 𝑷 D 𝑷 C D 𝑷 × 𝑷
6 2 ecelqsi C D 𝑷 × 𝑷 C D ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
7 5 6 syl C 𝑷 D 𝑷 C D ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
8 4 7 anim12i A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 C D ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹
9 eqid A B ~ 𝑹 = A B ~ 𝑹
10 eqid C D ~ 𝑹 = C D ~ 𝑹
11 9 10 pm3.2i A B ~ 𝑹 = A B ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹
12 eqid A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹
13 opeq12 w = A v = B w v = A B
14 13 eceq1d w = A v = B w v ~ 𝑹 = A B ~ 𝑹
15 14 eqeq2d w = A v = B A B ~ 𝑹 = w v ~ 𝑹 A B ~ 𝑹 = A B ~ 𝑹
16 15 anbi1d w = A v = B A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A B ~ 𝑹 = A B ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹
17 simpl w = A v = B w = A
18 17 oveq1d w = A v = B w 𝑷 C = A 𝑷 C
19 simpr w = A v = B v = B
20 19 oveq1d w = A v = B v 𝑷 D = B 𝑷 D
21 18 20 oveq12d w = A v = B w 𝑷 C + 𝑷 v 𝑷 D = A 𝑷 C + 𝑷 B 𝑷 D
22 17 oveq1d w = A v = B w 𝑷 D = A 𝑷 D
23 19 oveq1d w = A v = B v 𝑷 C = B 𝑷 C
24 22 23 oveq12d w = A v = B w 𝑷 D + 𝑷 v 𝑷 C = A 𝑷 D + 𝑷 B 𝑷 C
25 21 24 opeq12d w = A v = B w 𝑷 C + 𝑷 v 𝑷 D w 𝑷 D + 𝑷 v 𝑷 C = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C
26 25 eceq1d w = A v = B w 𝑷 C + 𝑷 v 𝑷 D w 𝑷 D + 𝑷 v 𝑷 C ~ 𝑹 = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹
27 26 eqeq2d w = A v = B A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 C + 𝑷 v 𝑷 D w 𝑷 D + 𝑷 v 𝑷 C ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹
28 16 27 anbi12d w = A v = B A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 C + 𝑷 v 𝑷 D w 𝑷 D + 𝑷 v 𝑷 C ~ 𝑹 A B ~ 𝑹 = A B ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹
29 28 spc2egv A 𝑷 B 𝑷 A B ~ 𝑹 = A B ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 w v A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 C + 𝑷 v 𝑷 D w 𝑷 D + 𝑷 v 𝑷 C ~ 𝑹
30 opeq12 u = C t = D u t = C D
31 30 eceq1d u = C t = D u t ~ 𝑹 = C D ~ 𝑹
32 31 eqeq2d u = C t = D C D ~ 𝑹 = u t ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹
33 32 anbi2d u = C t = D A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹
34 simpl u = C t = D u = C
35 34 oveq2d u = C t = D w 𝑷 u = w 𝑷 C
36 simpr u = C t = D t = D
37 36 oveq2d u = C t = D v 𝑷 t = v 𝑷 D
38 35 37 oveq12d u = C t = D w 𝑷 u + 𝑷 v 𝑷 t = w 𝑷 C + 𝑷 v 𝑷 D
39 36 oveq2d u = C t = D w 𝑷 t = w 𝑷 D
40 34 oveq2d u = C t = D v 𝑷 u = v 𝑷 C
41 39 40 oveq12d u = C t = D w 𝑷 t + 𝑷 v 𝑷 u = w 𝑷 D + 𝑷 v 𝑷 C
42 38 41 opeq12d u = C t = D w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u = w 𝑷 C + 𝑷 v 𝑷 D w 𝑷 D + 𝑷 v 𝑷 C
43 42 eceq1d u = C t = D w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹 = w 𝑷 C + 𝑷 v 𝑷 D w 𝑷 D + 𝑷 v 𝑷 C ~ 𝑹
44 43 eqeq2d u = C t = D A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 C + 𝑷 v 𝑷 D w 𝑷 D + 𝑷 v 𝑷 C ~ 𝑹
45 33 44 anbi12d u = C t = D A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹 A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 C + 𝑷 v 𝑷 D w 𝑷 D + 𝑷 v 𝑷 C ~ 𝑹
46 45 spc2egv C 𝑷 D 𝑷 A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 C + 𝑷 v 𝑷 D w 𝑷 D + 𝑷 v 𝑷 C ~ 𝑹 u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹
47 46 2eximdv C 𝑷 D 𝑷 w v A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 C + 𝑷 v 𝑷 D w 𝑷 D + 𝑷 v 𝑷 C ~ 𝑹 w v u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹
48 29 47 sylan9 A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 = A B ~ 𝑹 C D ~ 𝑹 = C D ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 w v u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹
49 11 12 48 mp2ani A 𝑷 B 𝑷 C 𝑷 D 𝑷 w v u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹
50 ecexg ~ 𝑹 V A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 V
51 2 50 ax-mp A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 V
52 simp1 x = A B ~ 𝑹 y = C D ~ 𝑹 z = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 x = A B ~ 𝑹
53 52 eqeq1d x = A B ~ 𝑹 y = C D ~ 𝑹 z = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 x = w v ~ 𝑹 A B ~ 𝑹 = w v ~ 𝑹
54 simp2 x = A B ~ 𝑹 y = C D ~ 𝑹 z = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 y = C D ~ 𝑹
55 54 eqeq1d x = A B ~ 𝑹 y = C D ~ 𝑹 z = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 y = u t ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹
56 53 55 anbi12d x = A B ~ 𝑹 y = C D ~ 𝑹 z = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 x = w v ~ 𝑹 y = u t ~ 𝑹 A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹
57 simp3 x = A B ~ 𝑹 y = C D ~ 𝑹 z = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 z = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹
58 57 eqeq1d x = A B ~ 𝑹 y = C D ~ 𝑹 z = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹
59 56 58 anbi12d x = A B ~ 𝑹 y = C D ~ 𝑹 z = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 x = w v ~ 𝑹 y = u t ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹 A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹
60 59 4exbidv x = A B ~ 𝑹 y = C D ~ 𝑹 z = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹 w v u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹
61 mulsrmo x 𝑷 × 𝑷 / ~ 𝑹 y 𝑷 × 𝑷 / ~ 𝑹 * z w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹
62 df-mr 𝑹 = x y z | x 𝑹 y 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹
63 df-nr 𝑹 = 𝑷 × 𝑷 / ~ 𝑹
64 63 eleq2i x 𝑹 x 𝑷 × 𝑷 / ~ 𝑹
65 63 eleq2i y 𝑹 y 𝑷 × 𝑷 / ~ 𝑹
66 64 65 anbi12i x 𝑹 y 𝑹 x 𝑷 × 𝑷 / ~ 𝑹 y 𝑷 × 𝑷 / ~ 𝑹
67 66 anbi1i x 𝑹 y 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹 x 𝑷 × 𝑷 / ~ 𝑹 y 𝑷 × 𝑷 / ~ 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹
68 67 oprabbii x y z | x 𝑹 y 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹 = x y z | x 𝑷 × 𝑷 / ~ 𝑹 y 𝑷 × 𝑷 / ~ 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹
69 62 68 eqtri 𝑹 = x y z | x 𝑷 × 𝑷 / ~ 𝑹 y 𝑷 × 𝑷 / ~ 𝑹 w v u t x = w v ~ 𝑹 y = u t ~ 𝑹 z = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹
70 60 61 69 ovig A B ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 C D ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 V w v u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹 A B ~ 𝑹 𝑹 C D ~ 𝑹 = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹
71 51 70 mp3an3 A B ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 C D ~ 𝑹 𝑷 × 𝑷 / ~ 𝑹 w v u t A B ~ 𝑹 = w v ~ 𝑹 C D ~ 𝑹 = u t ~ 𝑹 A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹 = w 𝑷 u + 𝑷 v 𝑷 t w 𝑷 t + 𝑷 v 𝑷 u ~ 𝑹 A B ~ 𝑹 𝑹 C D ~ 𝑹 = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹
72 8 49 71 sylc A 𝑷 B 𝑷 C 𝑷 D 𝑷 A B ~ 𝑹 𝑹 C D ~ 𝑹 = A 𝑷 C + 𝑷 B 𝑷 D A 𝑷 D + 𝑷 B 𝑷 C ~ 𝑹