| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opelxpi |
|
| 2 |
|
enrex |
|
| 3 |
2
|
ecelqsi |
|
| 4 |
1 3
|
syl |
|
| 5 |
|
opelxpi |
|
| 6 |
2
|
ecelqsi |
|
| 7 |
5 6
|
syl |
|
| 8 |
4 7
|
anim12i |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
9 10
|
pm3.2i |
|
| 12 |
|
eqid |
|
| 13 |
|
opeq12 |
|
| 14 |
13
|
eceq1d |
|
| 15 |
14
|
eqeq2d |
|
| 16 |
15
|
anbi1d |
|
| 17 |
|
simpl |
|
| 18 |
17
|
oveq1d |
|
| 19 |
|
simpr |
|
| 20 |
19
|
oveq1d |
|
| 21 |
18 20
|
oveq12d |
|
| 22 |
17
|
oveq1d |
|
| 23 |
19
|
oveq1d |
|
| 24 |
22 23
|
oveq12d |
|
| 25 |
21 24
|
opeq12d |
|
| 26 |
25
|
eceq1d |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
16 27
|
anbi12d |
|
| 29 |
28
|
spc2egv |
|
| 30 |
|
opeq12 |
|
| 31 |
30
|
eceq1d |
|
| 32 |
31
|
eqeq2d |
|
| 33 |
32
|
anbi2d |
|
| 34 |
|
simpl |
|
| 35 |
34
|
oveq2d |
|
| 36 |
|
simpr |
|
| 37 |
36
|
oveq2d |
|
| 38 |
35 37
|
oveq12d |
|
| 39 |
36
|
oveq2d |
|
| 40 |
34
|
oveq2d |
|
| 41 |
39 40
|
oveq12d |
|
| 42 |
38 41
|
opeq12d |
|
| 43 |
42
|
eceq1d |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
33 44
|
anbi12d |
|
| 46 |
45
|
spc2egv |
|
| 47 |
46
|
2eximdv |
|
| 48 |
29 47
|
sylan9 |
|
| 49 |
11 12 48
|
mp2ani |
|
| 50 |
|
ecexg |
|
| 51 |
2 50
|
ax-mp |
|
| 52 |
|
simp1 |
|
| 53 |
52
|
eqeq1d |
|
| 54 |
|
simp2 |
|
| 55 |
54
|
eqeq1d |
|
| 56 |
53 55
|
anbi12d |
|
| 57 |
|
simp3 |
|
| 58 |
57
|
eqeq1d |
|
| 59 |
56 58
|
anbi12d |
|
| 60 |
59
|
4exbidv |
|
| 61 |
|
mulsrmo |
|
| 62 |
|
df-mr |
|
| 63 |
|
df-nr |
|
| 64 |
63
|
eleq2i |
|
| 65 |
63
|
eleq2i |
|
| 66 |
64 65
|
anbi12i |
|
| 67 |
66
|
anbi1i |
|
| 68 |
67
|
oprabbii |
|
| 69 |
62 68
|
eqtri |
|
| 70 |
60 61 69
|
ovig |
|
| 71 |
51 70
|
mp3an3 |
|
| 72 |
8 49 71
|
sylc |
|