Step |
Hyp |
Ref |
Expression |
1 |
|
opelxpi |
|
2 |
|
enrex |
|
3 |
2
|
ecelqsi |
|
4 |
1 3
|
syl |
|
5 |
|
opelxpi |
|
6 |
2
|
ecelqsi |
|
7 |
5 6
|
syl |
|
8 |
4 7
|
anim12i |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
9 10
|
pm3.2i |
|
12 |
|
eqid |
|
13 |
|
opeq12 |
|
14 |
13
|
eceq1d |
|
15 |
14
|
eqeq2d |
|
16 |
15
|
anbi1d |
|
17 |
|
simpl |
|
18 |
17
|
oveq1d |
|
19 |
|
simpr |
|
20 |
19
|
oveq1d |
|
21 |
18 20
|
oveq12d |
|
22 |
17
|
oveq1d |
|
23 |
19
|
oveq1d |
|
24 |
22 23
|
oveq12d |
|
25 |
21 24
|
opeq12d |
|
26 |
25
|
eceq1d |
|
27 |
26
|
eqeq2d |
|
28 |
16 27
|
anbi12d |
|
29 |
28
|
spc2egv |
|
30 |
|
opeq12 |
|
31 |
30
|
eceq1d |
|
32 |
31
|
eqeq2d |
|
33 |
32
|
anbi2d |
|
34 |
|
simpl |
|
35 |
34
|
oveq2d |
|
36 |
|
simpr |
|
37 |
36
|
oveq2d |
|
38 |
35 37
|
oveq12d |
|
39 |
36
|
oveq2d |
|
40 |
34
|
oveq2d |
|
41 |
39 40
|
oveq12d |
|
42 |
38 41
|
opeq12d |
|
43 |
42
|
eceq1d |
|
44 |
43
|
eqeq2d |
|
45 |
33 44
|
anbi12d |
|
46 |
45
|
spc2egv |
|
47 |
46
|
2eximdv |
|
48 |
29 47
|
sylan9 |
|
49 |
11 12 48
|
mp2ani |
|
50 |
|
ecexg |
|
51 |
2 50
|
ax-mp |
|
52 |
|
simp1 |
|
53 |
52
|
eqeq1d |
|
54 |
|
simp2 |
|
55 |
54
|
eqeq1d |
|
56 |
53 55
|
anbi12d |
|
57 |
|
simp3 |
|
58 |
57
|
eqeq1d |
|
59 |
56 58
|
anbi12d |
|
60 |
59
|
4exbidv |
|
61 |
|
mulsrmo |
|
62 |
|
df-mr |
|
63 |
|
df-nr |
|
64 |
63
|
eleq2i |
|
65 |
63
|
eleq2i |
|
66 |
64 65
|
anbi12i |
|
67 |
66
|
anbi1i |
|
68 |
67
|
oprabbii |
|
69 |
62 68
|
eqtri |
|
70 |
60 61 69
|
ovig |
|
71 |
51 70
|
mp3an3 |
|
72 |
8 49 71
|
sylc |
|