Metamath Proof Explorer


Theorem mulsub2

Description: Swap the order of subtraction in a multiplication. (Contributed by Scott Fenton, 24-Jun-2013)

Ref Expression
Assertion mulsub2 A B C D A B C D = B A D C

Proof

Step Hyp Ref Expression
1 subcl A B A B
2 subcl C D C D
3 mul2neg A B C D A B C D = A B C D
4 1 2 3 syl2an A B C D A B C D = A B C D
5 negsubdi2 A B A B = B A
6 negsubdi2 C D C D = D C
7 5 6 oveqan12d A B C D A B C D = B A D C
8 4 7 eqtr3d A B C D A B C D = B A D C