Metamath Proof Explorer


Theorem mulsubdivbinom2

Description: The square of a binomial with factor minus a number divided by a nonzero number. (Contributed by AV, 19-Jul-2021)

Ref Expression
Assertion mulsubdivbinom2 A B D C C 0 C A + B 2 D C = C A 2 + 2 A B + B 2 D C

Proof

Step Hyp Ref Expression
1 simp1 A B D A
2 1 adantr A B D C C 0 A
3 simpl2 A B D C C 0 B
4 simpl C C 0 C
5 4 adantl A B D C C 0 C
6 mulbinom2 A B C C A + B 2 = C A 2 + 2 C A B + B 2
7 6 oveq1d A B C C A + B 2 D = C A 2 + 2 C A B + B 2 - D
8 7 oveq1d A B C C A + B 2 D C = C A 2 + 2 C A B + B 2 - D C
9 2 3 5 8 syl3anc A B D C C 0 C A + B 2 D C = C A 2 + 2 C A B + B 2 - D C
10 5 2 mulcld A B D C C 0 C A
11 10 sqcld A B D C C 0 C A 2
12 2cnd C 2
13 id C C
14 12 13 mulcld C 2 C
15 14 adantr C C 0 2 C
16 15 adantl A B D C C 0 2 C
17 mulcl A B A B
18 17 3adant3 A B D A B
19 18 adantr A B D C C 0 A B
20 16 19 mulcld A B D C C 0 2 C A B
21 11 20 addcld A B D C C 0 C A 2 + 2 C A B
22 sqcl B B 2
23 22 3ad2ant2 A B D B 2
24 23 adantr A B D C C 0 B 2
25 21 24 addcld A B D C C 0 C A 2 + 2 C A B + B 2
26 simpl3 A B D C C 0 D
27 simpr A B D C C 0 C C 0
28 divsubdir C A 2 + 2 C A B + B 2 D C C 0 C A 2 + 2 C A B + B 2 - D C = C A 2 + 2 C A B + B 2 C D C
29 25 26 27 28 syl3anc A B D C C 0 C A 2 + 2 C A B + B 2 - D C = C A 2 + 2 C A B + B 2 C D C
30 divdir C A 2 + 2 C A B B 2 C C 0 C A 2 + 2 C A B + B 2 C = C A 2 + 2 C A B C + B 2 C
31 21 24 27 30 syl3anc A B D C C 0 C A 2 + 2 C A B + B 2 C = C A 2 + 2 C A B C + B 2 C
32 divdir C A 2 2 C A B C C 0 C A 2 + 2 C A B C = C A 2 C + 2 C A B C
33 11 20 27 32 syl3anc A B D C C 0 C A 2 + 2 C A B C = C A 2 C + 2 C A B C
34 sqmul C A C A 2 = C 2 A 2
35 4 1 34 syl2anr A B D C C 0 C A 2 = C 2 A 2
36 35 oveq1d A B D C C 0 C A 2 C = C 2 A 2 C
37 sqcl C C 2
38 37 adantr C C 0 C 2
39 38 adantl A B D C C 0 C 2
40 sqcl A A 2
41 40 3ad2ant1 A B D A 2
42 41 adantr A B D C C 0 A 2
43 div23 C 2 A 2 C C 0 C 2 A 2 C = C 2 C A 2
44 39 42 27 43 syl3anc A B D C C 0 C 2 A 2 C = C 2 C A 2
45 sqdivid C C 0 C 2 C = C
46 45 adantl A B D C C 0 C 2 C = C
47 46 oveq1d A B D C C 0 C 2 C A 2 = C A 2
48 36 44 47 3eqtrd A B D C C 0 C A 2 C = C A 2
49 div23 2 C A B C C 0 2 C A B C = 2 C C A B
50 16 19 27 49 syl3anc A B D C C 0 2 C A B C = 2 C C A B
51 2cnd C C 0 2
52 simpr C C 0 C 0
53 51 4 52 divcan4d C C 0 2 C C = 2
54 53 adantl A B D C C 0 2 C C = 2
55 54 oveq1d A B D C C 0 2 C C A B = 2 A B
56 50 55 eqtrd A B D C C 0 2 C A B C = 2 A B
57 48 56 oveq12d A B D C C 0 C A 2 C + 2 C A B C = C A 2 + 2 A B
58 33 57 eqtrd A B D C C 0 C A 2 + 2 C A B C = C A 2 + 2 A B
59 58 oveq1d A B D C C 0 C A 2 + 2 C A B C + B 2 C = C A 2 + 2 A B + B 2 C
60 31 59 eqtrd A B D C C 0 C A 2 + 2 C A B + B 2 C = C A 2 + 2 A B + B 2 C
61 60 oveq1d A B D C C 0 C A 2 + 2 C A B + B 2 C D C = C A 2 + 2 A B + B 2 C - D C
62 5 42 mulcld A B D C C 0 C A 2
63 2cnd A B 2
64 63 17 mulcld A B 2 A B
65 64 3adant3 A B D 2 A B
66 65 adantr A B D C C 0 2 A B
67 62 66 addcld A B D C C 0 C A 2 + 2 A B
68 52 adantl A B D C C 0 C 0
69 24 5 68 divcld A B D C C 0 B 2 C
70 26 5 68 divcld A B D C C 0 D C
71 67 69 70 addsubassd A B D C C 0 C A 2 + 2 A B + B 2 C - D C = C A 2 + 2 A B + B 2 C D C
72 29 61 71 3eqtrd A B D C C 0 C A 2 + 2 C A B + B 2 - D C = C A 2 + 2 A B + B 2 C D C
73 divsubdir B 2 D C C 0 B 2 D C = B 2 C D C
74 24 26 27 73 syl3anc A B D C C 0 B 2 D C = B 2 C D C
75 74 eqcomd A B D C C 0 B 2 C D C = B 2 D C
76 75 oveq2d A B D C C 0 C A 2 + 2 A B + B 2 C D C = C A 2 + 2 A B + B 2 D C
77 9 72 76 3eqtrd A B D C C 0 C A + B 2 D C = C A 2 + 2 A B + B 2 D C