Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|
2 |
1
|
adantr |
|
3 |
|
simpl2 |
|
4 |
|
simpl |
|
5 |
4
|
adantl |
|
6 |
|
mulbinom2 |
|
7 |
6
|
oveq1d |
|
8 |
7
|
oveq1d |
|
9 |
2 3 5 8
|
syl3anc |
|
10 |
5 2
|
mulcld |
|
11 |
10
|
sqcld |
|
12 |
|
2cnd |
|
13 |
|
id |
|
14 |
12 13
|
mulcld |
|
15 |
14
|
adantr |
|
16 |
15
|
adantl |
|
17 |
|
mulcl |
|
18 |
17
|
3adant3 |
|
19 |
18
|
adantr |
|
20 |
16 19
|
mulcld |
|
21 |
11 20
|
addcld |
|
22 |
|
sqcl |
|
23 |
22
|
3ad2ant2 |
|
24 |
23
|
adantr |
|
25 |
21 24
|
addcld |
|
26 |
|
simpl3 |
|
27 |
|
simpr |
|
28 |
|
divsubdir |
|
29 |
25 26 27 28
|
syl3anc |
|
30 |
|
divdir |
|
31 |
21 24 27 30
|
syl3anc |
|
32 |
|
divdir |
|
33 |
11 20 27 32
|
syl3anc |
|
34 |
|
sqmul |
|
35 |
4 1 34
|
syl2anr |
|
36 |
35
|
oveq1d |
|
37 |
|
sqcl |
|
38 |
37
|
adantr |
|
39 |
38
|
adantl |
|
40 |
|
sqcl |
|
41 |
40
|
3ad2ant1 |
|
42 |
41
|
adantr |
|
43 |
|
div23 |
|
44 |
39 42 27 43
|
syl3anc |
|
45 |
|
sqdivid |
|
46 |
45
|
adantl |
|
47 |
46
|
oveq1d |
|
48 |
36 44 47
|
3eqtrd |
|
49 |
|
div23 |
|
50 |
16 19 27 49
|
syl3anc |
|
51 |
|
2cnd |
|
52 |
|
simpr |
|
53 |
51 4 52
|
divcan4d |
|
54 |
53
|
adantl |
|
55 |
54
|
oveq1d |
|
56 |
50 55
|
eqtrd |
|
57 |
48 56
|
oveq12d |
|
58 |
33 57
|
eqtrd |
|
59 |
58
|
oveq1d |
|
60 |
31 59
|
eqtrd |
|
61 |
60
|
oveq1d |
|
62 |
5 42
|
mulcld |
|
63 |
|
2cnd |
|
64 |
63 17
|
mulcld |
|
65 |
64
|
3adant3 |
|
66 |
65
|
adantr |
|
67 |
62 66
|
addcld |
|
68 |
52
|
adantl |
|
69 |
24 5 68
|
divcld |
|
70 |
26 5 68
|
divcld |
|
71 |
67 69 70
|
addsubassd |
|
72 |
29 61 71
|
3eqtrd |
|
73 |
|
divsubdir |
|
74 |
24 26 27 73
|
syl3anc |
|
75 |
74
|
eqcomd |
|
76 |
75
|
oveq2d |
|
77 |
9 72 76
|
3eqtrd |
|