Metamath Proof Explorer


Theorem mulsuble0b

Description: A condition for multiplication of subtraction to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013)

Ref Expression
Assertion mulsuble0b A B C A B C B 0 A B B C C B B A

Proof

Step Hyp Ref Expression
1 resubcl A B A B
2 1 3adant3 A B C A B
3 resubcl C B C B
4 3 ancoms B C C B
5 4 3adant1 A B C C B
6 mulle0b A B C B A B C B 0 A B 0 0 C B 0 A B C B 0
7 2 5 6 syl2anc A B C A B C B 0 A B 0 0 C B 0 A B C B 0
8 suble0 A B A B 0 A B
9 8 3adant3 A B C A B 0 A B
10 subge0 C B 0 C B B C
11 10 ancoms B C 0 C B B C
12 11 3adant1 A B C 0 C B B C
13 9 12 anbi12d A B C A B 0 0 C B A B B C
14 subge0 A B 0 A B B A
15 14 3adant3 A B C 0 A B B A
16 suble0 C B C B 0 C B
17 16 ancoms B C C B 0 C B
18 17 3adant1 A B C C B 0 C B
19 15 18 anbi12d A B C 0 A B C B 0 B A C B
20 19 biancomd A B C 0 A B C B 0 C B B A
21 13 20 orbi12d A B C A B 0 0 C B 0 A B C B 0 A B B C C B B A
22 7 21 bitrd A B C A B C B 0 A B B C C B B A